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ABSTRACT 

Axial mode combustion instability in liquid rocket combustors 

is investigated, analytically, with the combustion processes represented 

using the Crocco time-lag concept. Periodic oscillations of finite ampli- 

tude, both continuous and discontinuous in form, are studied. 

Two types of combustion distribution are considered. The first 

is the limiting case where the combustion can be taken to be concen- 

trated at the injector face. The second occurs when the combustion is 

sufficiently distributed so that the derivative of the steady-state veloc- 

ity is of  the same order as the steady-state velocity itself. 

For either type of combustion distribution both continuous and 

discontinuous pressure waves are predicted for values of the combustion 

feedback parameters that are in the range of practical interest. Small 

amplitude continuous oscillations are found to exist near the stability 

limit predicted by previous linear analyses. Larger amplitude discontin- 

uous, shock-type oscillations are found at larger displacements into the 

region of linear instability. Discontinuous oscillations are also found 

for some values of the combustion parameters for which linear stability 

is predicted. In this latter case the periodic discontinuous oscillations 

are considered to be the form that oscillations take when triggered by a 

finite amplitude disturbance. 

The distinctive form of the discontinuous pressure waves pre- 

dicted, and their clear-cut dependence on the combustion feedback parameters, 

offer a potential means of relating the stability behavior of a given com- 

bustor to the two combustion feedback parameters through experimental 

techniques. 



iii 

ACKNOWLEDGEMENTS 

It is  a pleasure to acknowledge the invaluable guidance given 

by Professor Luigi Crocco throughout the course of this investigation. 

The many valuable suggestions given by him made the completion of this 

report possible; the discussions of the work held with him made the 

endeavor stimulating and pleasurable. 

I am very grateful to Dr. William A. Sirignano who generously 

gave of his time in many fruitful discussions. 

of nonlinear mechanics was often drawn upon. 

His knowledge in the area 

The help of Mr. David T. Harrje, Senior Research Engineer, in 

the understanding of the experimental combustion instability program at 

Princeton is sincerely appreciated. Mr. Lanny Hoffman of the Guggenheim 

Computing Group gave many helpful suggestions concerning the numerical 

work carried out in this investigation. 

Support for this research was provided by NASA under Grant 

NsG-99-60 and Contract NASr-217. The work also made use of computer facil- 

ities supported in part by National Science Foundation Grant NSF-GP579. 



iv 

TABLE OF CONTENTS 

TITLE PAGE 
ABSTRACT 
ACKNOWLEDGEMENTS 
TABLE OF CONTENTS 
NOMENCLATURE 

INTRODUCTION 

CHAPTER I: CONCENTRATED COMBUSTION MODEL 

A. Assumptions 
B. Solution of the Partial Differential Equations 
C. Solution of the Governing Ordinary Differential Equation 

r a) General Properties of Solutions for Rational 
b) 
c) 

d) Continuous Solutions of Finite Amplitude 
e) The Matching of Discontinuous and Continuous 

f) Relaxation of the Restriction of  to Rational 

g) Stability Limits in the n ,*  Plane 

Discontinuous Solutions for r = 1 
Discontinuous Solutions for p a Rational Fraction 
Less Than Unity 

Periodic Solutions 

Fractions of Two for Discontinuous Periodic Solutions 

CHAPTER 11: DISTRIBUTED COMBUSTION 

A. Presentation of the Model and the Governing Equations 
B. Solution of the Governing Partial Differential Equations 
C. Solution of the Equation Governing the First Order 

Function f ( 0 )  

CHAPTER 111. SUMMARY AND DISCUSSION 

A. General Considerations 
B. Analytical Techniques and Results 
C. Comparison With Experiment 

REFERENCES 

FIGURES 

APPENDIX A: CALCULATION OF 71 

1. Calculation of Tl Following the Shock Wave 
a) Concentrated Combustion 
b) Distributed Combustion 

2 .  An Alternative Method of Calculating 

Page 
i 
ii 
iii 
iv 
V 

1 

10 
14 
33 
33 
38 

46 
60  

7 5  

a4 
88 

91 
94 

119 

1 2 6  
1 2 6  
1 3 7  

143 

A- 1 

A- 1 
A- 3 

A- 5 



V 

NOMENCLATURE 

'- 

General 

X 

t 

U 

a 

P 

f 
T 

S 

h 
I I  
-I? 
M 

n 
2- 
71 
E 

e 

A 

U 

r 
46 
C 
P 

gr 

gS 

r f 

f 

f 

f 

S 

r 

S 

s 

longitudinal space dimension 

time 

gas velocity 

speed of sound 

pressure 
density 

temperature 

entropy 

en t ha 1 py 
ratio of specific heats 

gas constant 
Mach number 

interaction index 

time - 1 ag 
period of oscillation 

perturbation parameter 

shock velocity 

stretched time coordinate 

stretched time-lag 

normal displacement from linear stability curve 

displacement factor 

specific heat at constant pressure 

of o(e 
of O ( C )  

X 
= function of the argument t - - 1 + M  

= function of the argument t + - 
= function of the argument 8 - x of O(M) 

X 
1 - M  

= function of the argument @ +  x of O(M) 

= function of the argument e -  x of O ( M 2 )  

= function of the argument e+ x o f  o(P?) 

= perturbation parameter 



vi 

~ = mass flow per unit area per unit time 

Subscripts 

9 i = 0, 1, 2, . .. etc. - ith term in series expansion (in M or 

I, I1 - quantities in region I or I1 respectively (see Figure 1) 
1 - indicates property of liquid propellant 

E - quantities at x = 1 (exit to cylindrical part of combustion chamber) 

s - stagnation quantity (except for fs , Fs , gs) 

r - reference quantity 

Superscripts 

(1) (2) (3 )  . . . .  etc. - i term in series expansion in 

* - vector quantity 

s th 

1 - (primes) indicate deviation of quantity from its steady-state value 

it - dimensional quantity 

- - steady-state quantity 

Note: Superscripts appearing in the text without brackets around them 

signify the numerbered references given at the end of the text. 
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INTRODUCTION 

During operation, a liquid propellant rocket engine may ex- 

hibit organized oscillations of physical quantities, such as pressure 

and velocity, in the combustion chamber. This phenomenon is designated 

combustion instability and is to be distinguished from rough combustion, 

in which the gas field properties in the chamber fluctuate in a random 

manner. 

The most destructive kind of combustion instability is char- 

acterized by frequencies of  oscillation which are close to the frequen- 

cies of the organ pipe or acoustic modes characteristic of the given 

combustion chamber. This instability is thought to be generated by a 

more or less in phase coupling between energy addition from the combus- 

tion process and the pressure oscillations in the chamber. 

Other kinds of combustion instability which are observed have 

lower characteristic frequencies and are caused either by coupling be- 

tween the propellant feed system dynamics and the pressure oscillations 

in the chamber or by coupling between entropy waves (caused by local mix- 

ture ratio variations) and pressure oscillations in the chamber. 

The first mentioned type of instability, usually called high 

frequency instability, is the problem toward which the present investiga- 

tion is directed. 

In order to successfully analyze the general problem of high 

frequency instability it is necessary to first understand three sub prob- 

lems associated with unsteady operation of a liquid propellant rocket 

engine. The three areas which must be examined are: 
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1) The behavior of the combustion processes in the chamber 

under oscillatory conditions This includes understanding such phenom- 

ena as liquid jet mixing, vaporization and chemical kinetics. 

2 )  The behavior of the supercritical nozzle flow under oscil- 

latory conditions. 

cross-sectional area on gasdynamic oscillations, including the effects 

of nonlinear wave interactions. 

This problem involves studying the effects of varying 

3 )  The character of the wave-type oscillations in the chamber. 

The gasdynamic field which must be studied and in which the oscillations 

occur has sources of mass and energy distributed throughout it. The 

oscillations themselves may exhibit discontinuities or shocks and will 

certainly be determined by nonlinear interactions, at least for established 

oscillations. 

Strictly speaking, these three problems are related to each other 

to varying degrees. For example, the presence of combustion in the nozzle 

or in the chamber will cause the gasdynamic flows there to depend upon the 

way in which combustion takes place. It is often convenient, however, to 

separate these problems initially and then to combine them in a stability 

analysis at a later time. An illustration of this is the case in which the 

combustion zone can be considered to be concentrated at the injector. In 

this situation the chamber and nozzle f ow fields are naturally separated 

from the combustion processes. Indeed, the contbustion and nozzle flow char- 

acteristics only appear as boundary conlitions for the chamber flow equa- 

tions in this case. 

At the present time not  one of these three prohlems has been 

analyzed with complete success. The situation in the case  of the first 
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problem area, that of the combustion process itself, is probably the 

worst. Here, even the steady-state combustion of liquid propellants 

in rocket combustors is not well understood. In the absence of de- 

tailed knowledge of the combustion processes, it has proved useful in 

the study of combustion instability to devise and employ certain heu- 

ristic models of combustion which, it is hoped, represent sufficiently 

well those characteristics of the combustion process which are essential 

to the energy feedback loop supporting the oscillations of the gas in 

the rocket combustion chamber. Of these heuristic models for the combus- 

tion in the chamber, the Crocco sensitive time-lag theory has been most 

successfully employed in the analysis of high frequency instability. 

Essentially, this model assumes that during a certain period 

of time (the sensitive time-lag) before the instant of combustion, the 

propellants are affected by the conditions in the chamber to the extent 

that the moment of combustion for a given propellant element may be 

advanced or retarded according to the varying pressure, temperature, etc. 

in the chamber. The sensitivity of the propellant element to the oscil- 

lating chamber conditions is measured through the use of a second parameter, 

the interaction index, which correlates variations in temperature and 

other chamber properties to the pressure variations in the chamber. Detail- 

ed descriptions of Crocco's model appear at length in the literature on 

combustion instability. 1,14 

The investigation of the second problem area, the behavior of  

the exhaust nozzle under oscillatory conditions, is considerably more ad- 

vanced. In fact, when the amplitude of the oscillations in the nozzle is 

small enough so that nonlinear interactions are not too important, the 
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13 
problem has been extensively and successfully treated. Tsien and, 

later, Crocco studied linear axial oscillations in the convergent 
6 

parts of nozzle more than fifteen years ago. Since that time the linear 

theory has been extended to consider three dimensional oscillations in 

nozzles of varying geometry. A monograph by Crocco and Sirignano 
9 

gives a complete description of the three dimsensional linear theory, as 

well as extensive tables of numerical results obtained using the theory. 

For oscillations in the nozzle with amplitudes large enough 

so that nonlinear interactions must be considered important, the theory 

is not nearly so well developed. Zinn's work considers nonlinear 

effects up to third order in the amplitude of the pressure waves. Zinn, 

however, did not examine the case where shock waves might occur in the 

nozzle. Indeed, his analysis required that the noniinear waves be con- 

16 

tinuous in form. 

For the case where shock waves are present in the chamber and 

undergo some kind of complex reflection at the nozzle, no successful anal- 

ysis of the nozzle flow has been forthcoming so far. However, if axial 

shock waves are considered and the nozzle is taken to be vanishi-ngly short 

compared with the chamber length, then it has proved reasonable to approx- 

imate the nozzle's behavior by assuming that it is in a state of quasi- 

steady operation such that the Mach number at the entrance to the nozzle 

remains constant. I n  other words, a shock wave incident on the entrance 

to the nozzle will be partially transmitted and partially reflected, but 

no phasing or wave distortion will be effected. This approximation is 

usually referred to as the short nozzle assumption. 

The last of the three problems, that of the propagation of waves 
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in the chamber itself, is dependent upon the behavior of the combustion 

process and the nozzle flow. In fact, if some particular combustion 

mechanism and nozzle behavior is assumed, the study of the propagation 

of waves in the chamber is identical to the examination of the stability 

of the chamber, or the rocket engine as a whole. 

The study of chamber oscillations of small amplitude with the 

combustion process represented by the time-lag model has been extensively 

pursued. Crocco and Cheng first treated linear longitudinal oscilla- 

tions. Later Scala15 and Reardon extended the linear analysis to in- 

clude transverse and three dimensional oscillations. These linear studies 

all resulted in the prediction of certain linear stability limits depen- 

1 

14 

dent upon the combustion parameters n , the interaction index, and e ,  
the time-lag. On one side of these curves in the n , plane, the 

theories predict that small perturbations from steady operation of the 

chamber will grow in time. On the other side decay of small perturbations 

in time is predicted. These theoretically determined stability limits have 

been verified experimentally. For both longitudinal and transverse oscil- 

lations the agreement between theory and experiment is quite good. 7Y8 

Despite the apparent successes of the linear theories, they leave 

much to be desired. 

initiated by infinitesimally small disturbances to the steady-state chamber 

operation. Experimentally it is observed, however, that many rockets, 

though intrinsically stable, can be sent into unstable operation by sudden 

finite amplitude disturbances. These may occur either accidentally, as by 

sudden violent mixture ratio variation, or purposely, as by the introduction 

of charges of high energy gas produced by means such as gunpowder charges. 

First of all, they are only applicable to instability 



- 6 -  

Clearly,linear analyses cannot predict or explain such behavior. Sec- 

ondly, most established instability observed experimentally exhibits 

waveforms that are quite different from the predictions of simple 

acoustic theory. 

steep peaks or even discontinuities. Here again it is impossible for 

linear theories to predict this aspect of the instability; the regime 

form the oscillations take. Finally, because of the very nature of 

linear analysis, linear studies of instability can predict nothing about 

the dependence of the amplitude of the chamber oscillations on the com- 

bustion parameters n and y . 

The waveforms in general are distorted to forms with 

Nonlinear extensions to the linear theory have been successful 

in explaining some of the phenomena just mentioned. Two nonlinear inves- 

tigations by Sirignano and Zinn studied, respectively, longitudinal 

and transverse mode combustion instability for the case of  continuous pres- 

sure waves of finite amplitude. Both authors employed the time-lag combus- 

tion model and assumed that mass and energy addition occurred only in an 

arbitrarily thin region next to the injector face. The last assumption 

is equivalent to saying that the chamber is long compared to the zone where 

combustion occurs. Sirignano also invoked the short nozzle assumption in 

his work, while Zinn used his previously mentioned nonlinear results for 

three dimensional oscillations in the nozzle. For both longitudinal and 

transverse modes of oscillation, periodic finite amplitude waves are found 

to exist near the linear stability limits. The amplitude of the periodic 

waves is proportional to the square root of the normal displacement from 

the linear stability limit in the 

periodic oscillations found for displacements into regions of line& insta- 

2 16 

n , T plane. It is predicted that the 
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bility on the n , r plane are stable periodic oscillations, while 

the periodic oscillations found for normal displacements into regions 

of linear stability are unstable periodic oscillations. The existence 

of unstable periodic solutions in regions of the n , 'If plane that 

are linearly stable is interpreted as indicating that triggering of 

finite amplitude oscillations is possible. For oscillations with ampli- 

tudes less than that of the periodic unstable solution, decay of the ampli- 

tude in time is predicted, in agreement with the linear theory. For oscil- 

lations with amplitudes greater than that of the unstable periodic solution, 

however, growth of the amplitude in time is predicted. This means that for 

some values of n and 7 it should be possible to "bomb" an intrinsically 

stable rocket engine into unstable operation. This is, of course, in agree- 

ment with the experimental observations mentioned earlier. The waveforms 

of the stable periodic oscillations predicted by both Sirignano and Zinn 

also exhibit the sharp peaks observed in experiments. 

Clearly, the nonlinear studies just mentioned add considerable 

information about instability not obtainable from linear analysis. However, 

there are some important drawbacks in these analyses. 

rather mundane difficulty, is the sheer algebraic complexity involved. This 

is because the method of eigenfunction expansion is used 

of the equations describing the physical situation, and though math- 

ematically correct, this method requires considerable algebraic manipulation. 

A second, more basic shortcoming in these analyses, is their inability to 

consider discontinuous waveforms. The final drawback to this method of 

analysis used by Sirignano and Zinn is that it is only possible to predict 

the'waveforms and nonlinear behavior for values of n and that are very 

The first, and 

in the solution 
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close to the linear stability limit. Nothing can be said about what 

forms instability might take far from this limit. 

the phenomena of triggering can be predicted, the form that the 

triggered instability takes cannot be found. 

In particular, though 

24 
Sirignano also studied longitudinal instability using a 

different method of analysis that allowed the consideration of discon- 

tinuous waveforms. In this case, though the assumptions of combustion 

concentrated at the injector and short nozzle were employed, the time- 

lag model was not used to represent the combustion process. Instead a 

model predicting instantaneous response of the burning rate to pressure 

fluctuations was used. This meant that the energy addition to the gas- 

dynamic field was in phase with the pressure oscillations and that no 

off resonant oscillations associated with out of phase energy addition 

could be considered. This kind of combustion mechanism can only be 

valid as a limiting case for liquid propellant rockets, since experimental 

evidence clearly indicates that a time-lag of  the order of the period of 

oscillation does exist for this type of combustor. Indeed, this kind 

of combustion mechanism is more descriptive of the situation in a pre- 

mixed gas rocket, since in this case chemical kinetics are the controlling 

factor in combustion, and the response of the burning rate to pressure 

fluctuations is practically instantaneous. 

7 

Sirignano solved the problem thus posed using the characteristic 
1 7 , 1 8 , 1 9  

coordinate perturbation technique. 

second order in an amplitude parameter dependent upon the difference be- 

tween the energy input at the combustion zone and energy removal at the 

nozzle. The first order pressure waveforms that resulted were found to 

He carried out his analysis through 

~~ ~~ ~~ 
~ 
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take the form of a shock followed by an exponential decay. This wave 

form qualitatively agrees with observations of pressure waves in pre- 

mixed gas rockets. 
20 

From this brief summary of accomplishments in the solution 

of the three problems mentioned earlier, it is seen that there are many 

challenging areas in the field of combustion instability that are ripe 

for analytical investigation. The present study will be directed toward 

the investigation of shock wave combustion instability in the longitudinal 

mode. The combustion processes will be represented by the Crocco time- 

lag model. 

considered both for the case when they are concentrated at the injector 

(Chapter I) and for arbitrary axial distributions (Chapter 11). The short 

nozzle approximation will be employed throughout. 

The sources of mass and energy due t o  combustion will be 

The method of  analysis will follow the ideas used by Chester in 

his work on forced oscillation in closed tubes rather than the charac- 

teristic coordinate perturbation approach used by Sirignano. The purpose 

of the analysis is to find the dependence of the waveform and amplitude 

of discontinuous periodic oscillations on the combustion parameters n and 

3 

T when the time-lag model represents the combustion. 
linear stability limit will be constructed in the n , plane separating 

regions where finite amplitude discontinuous oscillations are possible from 

regions where they are not. The form of  the regime oscillations produced 

by triggering an engine that is linearly stable will also be determined. 

Finally, the wave shape and amplitude of oscillations with n and ?? values 

far from the linear stability limit, beyond the limit of applicability of 

earlier analyses, will be found. 

In this way a non- 
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CHAPTER I 

CONCENTRATED COMBUSTION MODEL 

A. Assumptions 

In general the combustion of liquid propellant elements and 

the attendant release of  mass and energy to the flow field in the com- 

bustion chamber of a liquid propellant rocket engine are distributed 

throughout the combustor in an arbitrary, three dimensional manner 

dependent upon injector design, propellants employed,etc. 

If, however, the rocket chamber is taken to be long compared 

to the region where combustion takes place,then the combustion can be 

considered to be concentrated at the injector face. 

separates the gasdynamic flow field from the combustion processes and 

leads to considerable analytical simplification since the combustion 

appears only as a boundary condition for the flow in the chamber and 

not in the partial differential equations governing that flow. 

This assumption 

Since this assumption will be relaxed in the next chapter,and 

since using it makes it easy to compare the results of the present analy- 

sis with the earlier work of Sirignano, the concentrated combustion 
2 

model will be adopted for the purpose of the analysis to be presented in 

this first chapter. 

Other assumptions necessary to define and delineate the problem 

under study are: 

1) The nozzle is assumed to be so short compared to the chamber 

length that quasi-steady operation of the nozzle can be assumed and a 

constant Mach number condition at the entrance to the nozzle results. 
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2) The chamber is taken to have a constant cross-sectional 

area. 

3) The flow in the chamber is assumed homentropic through 

second order in the wave amplitude. Entropy waves are thus ignored 

4 )  The flow is assumed one dimensional. 

5) The chamber gas is taken to be homocompositional and calo- 

rically perfect. 

Using the above assumptions the governing equations for any 

region in the chamber that does not contain a shock may be written as 

f 01 lows: 

conservation of mass: 

'b t" 
momentum: 

a x" 

homentropic condition: 

s*= const. 

At this point it is convenient to put the equations in a non- 

dimensional form. This is done using the following nondimensional 

variables: 

c 
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Using these nondimensional variables Equations (I-l), (I-2), 

and (1-3)  become 

- 5 -  JP a9LC = 0 
a t  bX 

5 = A  

Also, the perfect gas relation is written 

+'= P T  

(1-4) 

(1-7) 

By combining the perfect gas law and the hornentropic condition, 

the pressure and density may be expressed as the following functions 

of the l o c a l  sound velocity 

Substituting these expressions into Equations (1-5) and (1-4) yields 

Adding and subtracting (1-8) to (1-9) produces the following two equations 

(I- l o )  
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(1-11) 

Of course these equations are recognized to be in the well known form due 

to Riemann and to imply the following relationships 

where P and Q are arbitrary functions of their arguments, @ is con- 

stant along - = u + a and o( is constant along - = u - a . and dx dx 
dt dt 

& together form a characteristic coordinate system. It may be possible 

to solve the present problem as formulated in this characteristic coordinate 

In the current study, system following the method used by Sirignano. 

however, this will not be done. Instead the equations will be solved in 

physical coordinates following a method developed by Chester. 

2 

3 

There are two boundary conditions on Equations (1-10) and (1-11). 

The short nozzle boundary condition is applied at x = 1 , the nozzle 

entrance, and requires that the Mach number be constant there, i.e. 

a* (1-12) 

At the injector face, x = 0 , on the other hand, the boundary condition 

is derived from the use of the time-lag model to represent the combustion 

occurring there. 

to combustion is related to the steady-state mass flow as follows 

According to this model, the rate of mass generation due 
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(1-13) 

Here - de represents the rate of change of the sensitive time-lag. This 

expression assumes a constant injection rate even under oscillatory con- 
dt 

ditions. A linearized expression for - was originally devised by dt 
1 Crocco. Nonlinear extensions have been developed by Sirignano and 

Zinn. For reasons that will become apparent shortly, only the linear 

expression for - dr is needed in the present analysis. 

16 

dt 

The linearized derivation of - dZ will not be repeated here dt 

because it is readily available and clearly presented in Crocco's original 

L work. For the purpose of analysis the final result of his linearized 

treatment will be accepted as a postulate in this thesis. This relation- 

ship is 

(1-14) 

9% 9-1  
where terms of order pt2 and higher are not considered. 

To completely specify the problem some initial conditions would 

normally be given. Instead of this, however, a cyclic condition will be 

applied in the present analysis. That is, u and a will be required 

to be periodic in time. This allows the regime oscillatory condition to 

be sought rather than the behavior of a particular initial disturbance. 

B. Solution of the Partial Differential Equations 

A power series expansion technique will be used to solve the 

I equations. The choice of the expansion parameter is critical. 

I 
~~ 
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Crocco's linear analysis of the longitudinal mode uses an 

arbitrary expansion parameter that is small compared with and unrelated 

to the Mach number. This is because the combustion and nozzle boundary 

conditions for the unsteady problem differ from zero by an amount of 

order (Mp') . Necessarily then, if the linear analysis is to consider 

these two sources of energy addition or subtraction,the expansion para- 

meter must be able to go to zero independent of the Mach number. Peri- 

odic neutral oscillations which result from such a linear analysis occur 

where there is a balance to first order between the energy input due to 

combustion and the energy removal by the nozzle. If energy input is 

larger than removal, growth of small perturbations is predicted, if energy 

removal is larger than input, decay of small perturbations is predicted. 

Sirignano successfully employed a similar expansion parameter 

in his nonlinear study of finite amplitude continuous waves. Here the 

balancing of the combustion and nozzle effects was carried to third order. 

Also ,  in his study of longitudinal shock wave instability with no time-lag 

this principle of balancing nozzle and combustion effects to lowest order 

was used. In this case Sirignano defined the expansion parameter (ampli- 

tude of the shock wave) to be proportional to the first order difference 

between the combustion and nozzle admittances. The constant of proportion- 

ality chosen happened to be the steady-state Mach number, however, the 

ordering system was not dependent on the Mach number. That is, terms of 

order Mp' were taken to be of the same order as terms of order pl . 
Because of the success of these techniques which used an expan- 

sion parameter that required balancing of combustion and nozzle effects 

to lowest order, one might expect that such a method of expansion should 
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be successful in analyzing shock wave instability when a time-lag char- 

acterizes the combustion model. This, however, is not the case. It 

is instructive to perform a brief analysis showing how this technique 

fails. 

First, u and a are expressed as the sum of a steady-state 

part (denoted by a superposed bar) and a time variant perturbation. 

The time variant parts of u and a , u' and a', are then expressed 

as power series in , an arbitrary amplitude parameter 

u5 + u, 4- u, + - .  * .  

(1-15) 

(1-16) 

These expansions are then substituted in Equations (1-10) and 

(1-11). The final equations obtained, correct to first order in are 

These equations have the general solutions 

(1-17) 

(1-18) 

(1-19)  
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(1-20) 

The f i r s t  o rde r  boundary c o n d i t i o n  a t  x = 1 i s  taken d i r e c t l y  

from Equation (1-12) 

UI = # a ,  

The f i r s t  o rde r  boundary c o n d i t i o n  a t  x = 0 i s  de r ived  by 

combining Equations (1-13) and (1-14) 

(1-21) 

(1-22) 

z 
Because of t h e  f a c t  t h a t  u +- a i s  cont inuous through a -  1 

2 a  u - - second o r d e r  a c r o s s  a shock 

i s  continuous t o  second o rde r  a c r o s s  a shock moving toward t h e  nozz le ,  

moving toward t h e  i n j e c t o r  and 
Y -  

(1-19) and (1-20) may be s u b s t i t u t e d  d i r e c t l y  i n  (1-21)  and (1-22) even 

when a shock i s  p r e s e n t .  The procedure employed h e r e  w i l l  be  examined i n  

g r e a t e r  d e t a i l  l a t e r .  Th i s  s u b s t i t u t i o n  y i e l d s  t h e  fo l lowing  equa t ion  

7 

f o r  g f gr 

3- I 

2 
3)= - f l  (1-23) 

I f  a p e r i o d i c  shock wave s o l u t i o n  i s  t o  be cons ide red ,  t hen  t h e  

f i r s t  approximation t o  i t s  pe r iod  i s  j u s t  t h e  wave t rave l  t i m e  of an  

a c o u s t i c  wave, To . It fo l lows  t h a t  t h e  c y c l i c  c o n d i t i o n  t o  f i r s t  o rde r  

may be w r i t t e n  

( I -  24) 
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I) * -  

Substituting this expression in Equation (1-23) yields 

(1-25) 

If IKI  7 1 then j g / will increase without limit with 

increasing time. If I K )  4 f then J gl will decrease in time with 

the limiting value I g 1 = 0 . Either situation is not acceptable since 

it has already been required 

as n --+Or,. The n values 

2 or 3,  hence this value of 7 

that g be periodic. Thus I K I  1. K = 1 only 

of physical interest are usually less than 

K must also be discarded. The only acceptable 

value of K is, then, K = - 1 . F o r  this case n = - '+ , which is in 
agreement with the value of n obtained using Crocco's linear analysis when 

the first order period is the acoustic period. 

411 

For K = - 1 Equation (1-25) becomes 

(1-26) 

Unless T = To - , A an integer, the cyclic condition g(t) = g(t +To) 
is, again, apparently not satisfied. Thus T must equal T 0 / 2 4 .  This 

result also agrees with the predictions of the linear theory. 

2 4  

Unfortunately, it can easily be seen that the relationship (1-26) 

precludes the possibility of discontinuous solutions. For, if g undergoes 

a positive discontinuous jump at time t , then g at time t +r under- 
goes a negative discontinuous jump. A t  x = 0 Equations (1-19) and (1-20) 

together with the isentropic relation between a and p imply p(t) = 2bg(t). 

Consequently, a negative jump in g corresponds to a discontinuous decrease 

in pressure, or a rarefaction shock. This is not physically reasonable. 
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The conclusion must be drawn that periodic shock wave solutions to the 

problem as formulated are -impossible. 

The analysis just presented considers the combustion and nozzle 

conditions to first order. The lowest order solution corresponds to the 

linearized treatment of Crocco. Since the second order modification must 

be small compared with the first order result, the deviation from the 

balance in combustion and nozzle effects that produces the linear neutral 

stability curve must be small, indeed must be an order of magnitude smaller 

than the first order wave amplitude. Because in general a small differ- 

ence in energy balance must mean a small change from the linearly stable 

values of the combustion parameters n and ‘t. , this implies that the region 

of validity of higher order results obtained using the technique just employed 

is restricted to a region close to the neutral stability curve in the 

n , 5Y plane. In other words, shockless solutions for periodic pressure waves 

are to be anticipated close t o  the linear stability limit. 

There is another way of approaching the problem, which allows 

consideration of regions on the n , 7 plane far from the linear stability 

limit and which predicts discontinuous pressure waveforms in most of these 

regions. In this method the combustion and nozzle effects are not balanced 

to lowest order. Rather, the lowest order solution is taken to be the 

simple acoustic solution for the given chamber. 

The fact that the steady-state Mach number acts as a measure 

of the level of steady-state combustion in the chamber and mean nozzle out- 

flow is used t o  accomplish this. It is required that the expansion para- 

meter e , be of the order of the steady-state Mach number. This causes 
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the combustion and nozzle admittances, which are of order Map’ or 

smaller, to be considered as being of the same order of magnitude as 

terms of order p r  and thus not first order effects. 
2 

To put this in mathematical terms, E , the expansion 

parameter is assumed to have the following form 

(1-27) 

H(n , t )  is, for the moment, an undetermined function of n and 2: 

that must be of order unity or less. It is obvious that as M-Y 0 , 

E ---* 0 also. However, it is not necessarily true that as goes 

to zero the Mach number must also tend to zero at the same time. This 

is because in some region of the n , ‘zy plane it is possible for 

H(n ,It-) t o  tend to zero independent of the Mach number. The region 

where this is possible turns out to be the area close to the neutral sta- 

bility curve. 

To summarize, then, in this method of ordering the terms in 

the governing equations and boundary conditions, the combustion and nozzle 

effects themselves are considered small to first order,in contrast with 

the first technique,which considered that only the difference in energy 

input and removal was small. 

The partial differential Equations (1-10) and (1-11) will 

now be solved using a power series representation of the dependent variables 

u and a, with the expansion parameter given by definition (1-27). u and 

a are represented as follows 
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These d e f i n i t i o n s  a r e  s u b s t i t u t e d  i n t o  Equat ions (1-10) and (1-11). 

Then, u s ing  the f a c t  t h a t  

systems of f i r s t  and second o r d e r  equa t ions .  

are  ( c o r r e c t  t o  O(M))  

6 = O(M) , t h e  e q u a t i o n s  a r e  s e p a r a t e d  i n t o  

The f i r s t  o r d e r  e q u a t i o n s  

The second order equat ions are ( c o r r e c t  t o  O(M2) ) 

(I- 28) 

(1-29) 

(1-30) 

The boundary c o n d i t i o n s  on t h e  f i r s t  o r d e r  equa t ions  are  homo- 

geneous when f = O(M) 

x - l  : LL, '0 (1-32) 
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(1-33) 

The second order boundary conditions are 

(1-34) 

These second order boundary conditions are in the same form as the first 

order boundary conditions found when p' 

the Mach number (Equations (1-21) and (1-22)). 

was taken small compared with 

The cyclic requirement on u and a must still be applied. 

Difficulties arise in the application of this condition because of the 

fact that the period of the lowest order solution is not necessarily the 

same as the true period of oscillation. That is, if it is required that 

a(t) = a(t +T) where T is some (undetermined) period of oscillation 

it is not true in general that This is because the 

lowest order approximation to the period in the present ordering scheme 

is simply the linear wave travel time. Clearly, when nonlinear wave effects 

and the combustion zone and nozzle are considered, the period can differ 

from this acoustic period by a correction of order M . In general this 

may be stated as follows: though a(t +T) = a(t) , and 

a,(t) = al(t + T ) .  

a,(t+W t a,(t+T)+ = a , ( c )  j axit) + # .  

it may not be concluded that a.(t +T)  = ai(t) since T depends on a 

(i an integer). This means that though,through an oscillation of one 

period, the lowest order solution may be a good approximation (deviation of 

1 i 
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order solution can differ from theztrue solution to first order even when 

the difference in periods is of second order. That is, for a discontinu- 

~ 

2 
O(y )) 

diction of the lowest order solution may differ by an amount that is 

of first order from the true solution because of the secular growth of 

the difference between the positions in x , t space of the first order 

solution and the higher order solutions. 

this difference in periods is particularly unfortunate,since the lowest 

to the true solution, for general position and time the pre- 

If the solution is discontinuous, 

ous solution, the lowest order solution will be in error to first order 

at the discontinuity just because the first order jump, which the solution 

experiences there, is not positioned correctly. Of course the "positioning 

error" will again grow in time, compounding the problem. 

Similar problems occur in the study of periodic solutions of 

ordinary, autonomous, nonlinear differential equations. A method of 

approaching these problems due to Poincare'has proved useful in 

the case of ordinary differential equations. Consequently, a technique 

10 

which follows the principal ideas of that method will be employed here. 

First, , the period, is expressed as a power series expansion 

in 4 
' f =  T , i - T + T , + * - * *  

where T has been taken equal to the acoustic wave travel time, 2 .  

A new independent variable, 8 , is then introduced 
0 

(1-36) 

2 
(1-37) 
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A s  0 goes from say, el to el+ 2, t will increase from 

to tl + T . 
coordinate system is equivalent to requiring that 

Thus, requiring that a(t) = a(t +T) in an x , t 

a(e) = a(e + 2 )  

in the x , 8 coordinate system. The periodic condition may then be 

written (x held constant): 

a(e) = ~ ( 9 4  

a and u are then represented by power series as follows 

(1-38) 

(1-39) 

The periodic condition may then be rewritten 

Q,(e+i , r )  + Q ~ ( B + z , ~ + - .  = a,(e>d f-  &(e ,~ )+ -  - .  

In this case, since the period, 2, is constant it must follow that 

(1-40) 

It is therefore seen that the simple transformation just made has caused 

solutions of  all orders to have the same period of  oscillation as the lowest 

order solution. This removes the secular terms mentioned earlier and also 

avoids the previously mentioned positioning error in the location of any 

discontinuity that may exist. 

The first order equations are now written using definitions (1-38) 

and (1-39) with e and x as the independent variables and the fact 
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3 - 3 (U,-$,&) = - (u, - = a,) 
8% 39 U- I 

These equations have the familiar solutions 

(1-41) 

(1-42) 

(1-43) 

UI- $, 4, = 2 c,(Q+s) 
(1-44) 

and fs are arbitrary functions representing disturbances travelling fr 

toward the nozzle and toward the injector, respectively. 

Since Equations (1-41) and (1-42) are only valid in regions not 

containing discontinuities,the combustion chamber will be separated into 

two regions as indicated in Figure 1. Only one shock wave is allowed. 

If no shock is present, region I and I1 are the same and the distinction is, 

of course, artificial. The first order solutions for the two regions are 

differentiated by the subscripts I and 11. Thus 

(1-45) 

(1-46) 

(1-47) 

(1-48) 



- 26 - 

The shock relations written out to second order in the shock strength 

require that u + - r- a -  be continuous across a shock moving toward 

a 2 the injector and u - - 
2 1 -  1 

toward the nozzle. This implies 

2 

be continuous across a shock moving 

In other words, the distinction between the first order functions in 

two regions proves unnecessary. 

= 0 applied at the 

nozzle, (x = 1) and the injector, x = 0 yields the following two 

u1 The homogeneous boundary condition 

re la t ions 

These are combined to give the following conditions on f 

the 

(1-49) 

(1-50) 

Equation (1-50) expresses satisfaction of the periodicity condition pre- 

viously discussed and comes, of course, as no surprise,since we reasoned 

a priori that the lowest order solution was periodic in 2 .  

The first order approximations for u and a may now be 

written 

(1-51) 

(1-52) 
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(1-53) 

(1-54) 

Equations (1-53) and (1-54) give u1 and a 1 in terms of the arbitrary 

function 

result in a nonlinear ordinary differential equation governing the form 

of f . 
form of u and a the first order solutions. The second order partial 

differential equations written using 8 , x coordinates are 

f . The second order analysis which will now be carried out will 

Thus’the purpose of the second order analysis is to find the 

1 1 ’  

(1-55) 

(1-56) 

and a ,given in Equations (1-53) 1 Substituting the expressions for u1 

and (1-54)’the second order equations become 
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Particular solutions to (1-57) and (1-58) are easily found from 

application of the theory of solution of linear first order partial differ- 

To these particular solutions,arbitrary second order functions of (e - x) 
and (e+ x) ,respectively,must be added. At the same time the solutions 

should be expressed as separate solutions for the two regions, I and 11. 

Thus 

e-8 J 

(1-64) 

( e - 4 , FsI( 8 + x) , FSII ( e + x) are FrII where 

arbitrary second order functions o f  their arguments,and the fact that 

FrI( 8 - x) , 

fI( e - x) = fII( 8 - x) , f ( e +  x) = f (e+ x) has been used. I I1 
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2 
5 -  1 Since u $. - a is continuous through second order across 

f(7)dq must a lso  a shock moving toward the-injector, and since 

be continuous across such a discontinuity, then equating Equations 
S:: 

(1-61) and (1-63) yields 

(1-65) 

Similarly, across a shock moving 
e -X 

f(?)dr are continuous,so 

and 2 
towards the nozzle, u - - 2 4 -  1 a2 

(1-66) 

Here again, as in the first order solution, distinction between the arbitrary 

functions in the two regions is unnecessary. 

Finally, then, the second order solutions are 

At the nozzle, x = 1 , the second order boundary condition is 

(1-69) 
U A  Ma,  

Adding Equations (1-67) to (1-68) to find an expression for 

ing a = b-1 If( e- x) + f ( e +  x)] from Equation (1-54), setting x = 1 , 

u2 , substitut- 

1 2 
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and noting that 

the following expression valid at x = 1 

f(e- 1) = f(9-F 1) (since f (e) = f( e+ 2) )  , yields 

(I- 70) 

where it has been noted that, due to the periodicity of 

The injector end, or combustion zone,boundary condition, to be 

applied at x = 0, is 

Using Equations - ( I -67)  , (1-68) and (1-54) this becomes 

(1-71) 

(I- 72) 

(1-73) 

Substitution of the expression for 

(1-70) yields 

F (e) given in (1-73) into Equation 
S 

( I -  74) 
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where the definition Fr(e) F ( 8  ) has been introduced. 

The cyclic condition may be applied by requiring 

Using Equation (1-67)  and the fact that 

periodic with period 2, the following condition on F ( e )  results 

f (e  ) and 

(I- 75) 

Combination of equations (1-74)  and (1-75) yields the following equation 

for f(e) 

(1-76) 

This equation is seen to be in the form of an ordinary,nonlinear, first 

order differential difference equation,where the retarded variable enters 

the equation in the second term on the right hand side. 

TI, the first order correction to the period,is a constant (in e) 
dependent upon the form and amplitude of f ( e )  . If a shock is present, 

T1 
one period of oscillation and calculating the change in the wave travel time. 

Both SirignanoZ4 and ChuZ5 employed this technique in their studies of 

one-dimensional periodic shock waves. 

Another way of finding T, 

may be evaluated in the standard manner of following the shock through 

that has, perhaps, more general appli- 
4 

cability, is based on certain extensions of some work by Cantrell and Hart 
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who investigated stability criteria fo r  flow in acoustic cavities. 

Both methods are-presented in Appendix A. The results of 

either calculation are the same, and are given as the following 

TI expression for 

f(0) is the value of f imediately after the shock, f(2) the value 

immediately before the shock. 

into Equation (1-76) yields a differential equation for 

of 8 ,that is only dependent on the parameters 

Tl Substituting this expression for 

f as function 

, M and Y . n y / A  

(1-77) 
de 

This is easily placed in a form where M does not appear, and in 

which the dependent variable is of order unity,by introducing g = ( a +  1)- f M '  
Then the equation becomes 

(1-78) 

k =  +( 501 + yC2)) 
The boundary condition for this equation is, of course, g(0)  + g(2)  = 2k . 

Integration of Equation (1-78) from zero to 2 yields the following 

re1 at i on 
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Using the definition of k and the fact that g must be periodic in 

2 this becomes 
2 

0 
J 

Since a + b = x +  1 # 0 , the above equation implies 

?[e i )  de' =- o r2 0 

Using the expression for T, 

(1-79) 

( '' l)f(e) and Equation 
M 

is derived 

the definition of k , the fact that g ( 8 )  = 

(1-79) the following expression for T 1 

T =  - M A  

This implies that for 

of g is above the acoustic frequency; for k < 0 the frequency is below 

the acoustic frequency; and for k = 0 the frequency is exactly the acoustic 

frequency of oscillation for the chamber. For obvious reasons, these three 

cases will be referred to,respectively,as above resonant oscillations, below 

k > 0 ,  Tl < 0 , and the frequency of oscillation 

resonant oscillations, and resonant oscillations. 

C .  Solution of the Governing Ordinary Differential Equation 

a) General Properties of Solutions for Rational - d 

If it is possible to find physically meaningful solutions to (1-78) 

that repeat themselves with period 2 and are separated by a discontinuity 

then shock wave solutions, correct to O ( M ) ,  for the problem as stated will 

have been found. 
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is a rational fraction of 2 (the first order or 

acoustic period),such periodic solutions can be found through the use 

of numerical techniques for the integration of Equation (1-78). Solu- 

tions of this equation will now be sought, and the characteristics of 

these solutions investigated,under the restriction , where 

q and 1 are integers and q C 1. 
/A = 2 

The range of values of f to be investigated is 0 Cp 4 2 . 
This is the range of /” corresponding to the fundamental mode of oscilla- 
tion in Crocco’s linear analysis. The linear neutral stability curve 

shown in Figure 2 represents the fundamental longitudinal mode of insta- 

bility,and is calculated using the linear result (with E C: C M) 

(1-80) 

It is apparent from either consideration of Equation (1-80),or looking at 

Figure 2,that the 

to the line 

linear stability curve is symmetric with respect nyr. 
P = l a  

r = 
The solutions of Equation (1-78) are not symmetric about 

Howeverythey are related through a simple transformation when symmetric 

= 1 , at constant n are considered,and displacements of 

is a rational fraction of 2. The analysis which follows derives this trans- 
P from r 

, formation. 

Consider = 2 , 0 caq 5 t. The interval 0 5 8  C 2 is 

divided into 4 
point 8 = 0 . 

sub-intervals, numbered in a progressive manner from the 

The 1 functions ,gi ,are introduced,so that g1 represents 
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r e p r e s e n t s  g i n  t h e  i n t e r v a l  2 
g i n  t h e  i n t e r v a l  0 ,C 5 - 2 , 82 

2 2 i  
r e p r e s e n t s  g i n  t h e  i n t e r v a l  ( i  - 1) 6 e 6 - 4 

2 Y gi P Y  g e s  3 
e t c .  The independent v a r i a b l e  is  also in t roduced .  f i s  d e f i n e d  a s  

P 3 = - & I  Q 1 = 
8 - ( i  - 1) . Thus, f =?E) i n  sub i n t e r v a l  1 , 

2 

i n  sub i n t e r v a l  2 , e t c .  

t h e  1 sub i n t e r v a l s .  

‘4 t h e r e f o r e  v a r i e s  from zero t o  one i n  each of 

(Note t h a t  i is  an  i n t e g e r  between 0 and 1 ) 
I f  a p e r i o d i c  s o l u t i o n  f o r  g exis ts ,  t hen  i t  must be t r u e  t h a t  

g i n  t h e  i t h  i n t e r v a l  b e f o r e  8 = 0 must be t h e  same as g i n  t h e  i t h  

i n t e r v a l  before  8 = 2 . Consequently,  f o r  1 6 i 6 q , g ( 3 )  = iP 
( f )  . For q + l  4 i 5 )  , Rip ( 9 )  = g i - , ( f )  . Using t h e s e  

gJ -q+l 

expres s ions  Equation (1-78) may then  be w r i t t e n  as t h e  fo l lowing  system 

of 1 equat ions:  

The r e q u i r e d  boundary c o n d i t i o n s  a r e  

(1-83) 

(1-84) 

The second s e t  of boundary c o n d i t i o n s  d e r i v e s  f r o m  t h e  f a c t  t h a t  continuous 

s o l u t i o n s  between 8 = 0 and 8 = 2 are being sough t ,  t h a t  i s ,  on ly  

one shock i s  allowed. 
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Note t h a t  t h e  system of Equations ( I -85 ) ,  (1-86) which r e p l a c e s  

(1-78) i s  a system of 4 f i r s t  order n o n l i n e a r  o r d i n a r y  d i f f e r e n t i a l  

equa t ions  wi th  no r e t a r d e d  v a r i a b l e ,  whereas (1-78) i s  a s i n g l e  f i r s t  

o r d e r  non l inea r  d i f f e r e n t i a l  equation wi th  a l agg ing  v a r i a b l e .  

Now cons ide r  )" = 2 9 0 cAq & p t h e  t ime-lag 

d i s p l a c e d  t h e  s a m e  amount from t h e  l i n e  

t i o n  as i s  p = 2 2 . 
fo l lowing  ,Q equa t ions  

= 1 b u t  i n  t h e  oppos i t e  d i r e c -  r 
I n  t h i s  ca se  a c y c l i c  s o l u t i o n  must s a t i s f y  t h e  

w i t h  t h e  boundary c o n d i t i o n s  

(1-87) 

(1-88) 

IC. - I f  i < Q - q y  
.L. - 

gi+q Here i t  has been noted t h a t  = ip '1 -(l -q>+i  

The independent v a r i a b l e  8 i s  now d e f i n e d  a s  8 = (1 - f )  
a r e  introduced,  where h gi ( p> = -ha ( 0 )  . - i+l and t h e  2 func t ions  h i ( @ )  

I f  t h e s e  a r e  s u b s t i t u t e d  i n t o  Equations (1-85) and ( I - 8 6 ) ,  t h e  fol lowing 

s e t  of equa t ions  r e s u l t s :  
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The f boundary conditions are 

(I- 90) 

(1-91) 

(1-92) 

Comparison of the system of equations (1-81), ( I -82) ,  (1-83), (1-84) 

with the system ( I -89) ,  ( I -90 ) ,  (1-91), (1-92) shows that as long as 

the value of n is the same, i.e., the a and b are the same, the 

equations and boundary conditions for the gi when p = 2 are the 

Consequently, if there is a same as for the 

for cyclic solution for the case 

a given value of n then there is an identical cyclic solution for the 

case r = 2 expressed in terms of the 1 h 

when /A. = 2 9 . hi 

gi 
- expressed in terms of 1 - R  

for the same value of n. a i 

- 2 b , z$)= - h Q -i+I (4) then, also, when 
h 

P -  1 
Since , when 

( 8 )  . The relation between gi(f) and g(e) 
# e (4) means that g(@) may be obtained from g~ -i+l just given, si(?) = 

g(e) by a 180' rotation of the cyclic solution g(8) about the axis 

e = i ,  g = o .  

There  is also a relationship between the first order period for 

= 2 8 and r = 2 &d . The fact that the equations 

are the same means that 

the two cases 

and boundary conditions for the h and the gi 
P 

i 
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I 

if a periodic solution is found in terms of the g for some value of 

k , then the same solution obtains for the 

definition kl = - k then implies k = - k . Since 3 = - k , the 
first order period for a given solution when /u = 2 a' is the negative 

of the first order period for the corresponding solution when 1 = 2 R-q . 
In other words, if a periodic solution for ,U L 1 is above resonant by 

some amount T , then the corresponding solution found by the simple 

rotation discussed above, will be below resonant by the same amount. 

i 
hi , with kl = k . The 

h ry - 
PI 

B 

1 

This transformation is most easily seen by using a concrete 

and the associated ,&i with equal dis- r = 2 ' 5 = 5  example. Consider 

3 6  placement from the line f = 1 , /cL = 2.- = - 5 5 '  

1 = 5 . 
In this case q = 2 , 

Figure 3A shows the interval 0 5 8 $ 2 divided into 5 sub 

intervals, and the assumed form of a cyclic solution for g(8) when 

4 
f =  5 . Figure 3B shows the solution resulting from a rotation of 180'. 

It is evident from comparing Figure 3A and Figure 3B that g ( 9 )  = - g5(l -3 ) ,  1 

g2'f) = - g p  - T )  Y g , ( p  = - g3(1 -3) , g4"f> = - g2(1 - 7 )  
and 

-g -i+l(J) is satisfied. 

g5(f) = - gl(l -3 ) , and, therefore, that the condition gi(f ) = 

2 and /u = 2 p-_4 are related r =  4 1 
Because the solutions for 

in this simple way, it is only necessary to integrate Equation (1-78) for 

C, 1 to find all solutions o f  (1-78) for 0 1 p  c 2 ,  p a  

rational fraction of 2. 

b) Discontinuous Solutions for /4 = 1  
I 

Before proceeding to the solution of Equation (1-78) for a 

general rational fraction of unity, the special case 

sidered to gain a certain insight into the general behavior of solutions 
/" = 1 

will be con- 
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to the governing equation. 

When = 1 then q = 1 1 = 2 , and there are only 2 
- 2 P - s  1- a sub divisions of the interval 0 5 8 ,C 2 . Moreover) since 

is the same as 

g i q )  = - g3,i (1 - 3 )  = -z3-i(l - 3 )  ,because 
gl(r) = - g2(1 - f )  . 
(1-78) when /A = 1 

This further implies that g(0) + g(2) must vanish because, by the anti- 

symmetry, gl(0) = - g2(1) . 
vious discussion of the relationship between T1 and k , p = 1 is 

seen to represent the case of resonant oscillations. This was also a 

result in the linearized treatment. Of course, only one value of n 

m) corresponded to ,U = 1 (n = 

When 

which correspond to a special case of Equations (1-81)) (1-82) 

for p = 1 becomes gi = 2 9 , the relationship between the 
* 1 - -  gi - gi . 

P 
* In other words, 

Consequently,any periodic solution t o  Equation 

must be antisymmetric with respect to the line e = 1 . 

Thus, k is zero,and,by referring to the pre- 

for neutral stability in that case. 
4 %  
/,l = 1, Equation (1-78) is decomposed into the following two equations 

The boundary conditions are 

The second boundary condition, along with the antisymmetry requirement) 

imp 1 i es  that 

(1-93) 

(1 -94 )  

'k This is strictly true if there is a unique solution for g . In all 
cases with = 1, this is found (by numerical integration) to be the 
case. Arguments are presented later to strengthen this contention. 

(1-95) 
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That is, the solution g(0) passes through zero at e = /u = 1 . 
This requirement, that g(1) = 0 , is equivalent to, and may be used 

in place of,the boundary condition g(0) + g(2) = 0, when p = I .  

Some other characteristics of the behavior of g(e) when 

p =  1 are easily discerned. 

(1-94) in the following form 

First, by rewriting Equation (1-93) and 

- 
JY 

and using 

seen that 

g( e = 2) 

(1-96) 

(1-97) 

the fact that g (1) = 0 (Equation (1-95)), it is immediately 

the slope of g at e = /u = 1 becomes infinite as long as 

(i.e., g immediately before the shock) is nonzero. Whenever 

1 

a discontinuity is present,this must be the case. Moreover, it can be shown 

that because of the antisymmetry and the requirement that the jump from 

g ( 2 )  t o  g(0) must be positive, g2 is always non positive and g1 always 

non negative. This implies that the slope of g at /y = 1 is negative. 

Using the definitions of  a and b , 
a: ' 1 S + 1 - L $ =  

b ~ 2 . 8 %  
it can be seen that for n 7 - is always negative. This is 2 6  ' d e  

g, 
- L  because a is negative and - is negative,while b is positive. By 
g1 

l. 

looking at Equations (1-96) and (1-97))it is obvious that the right hand 

sides of both are always negative. 

tive for the interval under consideration. Its value at 8 = 0 , and 

2b must always be nega- 
d e  Consequently, 

8 = 2 is simply a = I +  1 - 21rn and,thus becomes more and more nega- 
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, a = O ,  and tive as n increases. Similarly, when n = - 
a must be zero at 8 = 0 and 0 = 2 and.negative everywhere else. d e  

Y +  1 
2 s  

, a 7 0  , x+ 1 For n 4 22( and 5k de is positive at @ = 0 and 

e = 2 . The fact that the slope of g(8) must still be negative at 

e =  1 implies that g ( e )  has a maximum between 8 = 0 and e = 1 

and a corresponding minimum between 8 = 1 and 8 = 2 , for these values 

of n . 

The case a = b is of  particular interest since it corresponds to 

the resonant point on the linear neutral stability curve. This is true 

, and, since p =  1 , the values of Y +  1 because a = b only when n = - 4 d  
n 

lations, obtained by linear analysis. 

and p are identical with those for neutrally stable resonant oscil- 

When a = b Equation (1-96) and (1-97) become 

which imply 

d 9, 4 9 L  - - -  

(1-98) 

(1-99) 

(1-100) 

2 2 
Equation (1-100) is easily integrated to give 81 - 8.2 = c1 

2 2 2 
At 3 = 0 , g1 ( 0 )  - g2 ( 0 )  = C1 , but g2(0) = 0 , hence g1 ( 0 )  = C1. 

2 2 2 At f = 1 , g1 (1) - g2 (1) = g1 (0) but g12(1) = 0 hence 

g2 (1) = - g1 ( 0 )  . 2 2 It is required by the antisymmetry condition that 
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or 

requirement). If the relation 81 - - - 82 is substituted in Equations 

(1-98) and (I-99), one finds 

g1 = - g2 (gl = g2 cannot be used because of the antisymmetry 

= o  
82 

d e ,  -.c 9L 
d a L &  

= constant. Since g must pass or, integrating, g1 = constant, 

through zero at e = 1 , it is obvious that the constants are equal to 

zero. Thus, for the case a = b , the only solution for g(8) is the 

trivial one, g(e) a 0 . 
The conclusions that can be drawn from this brief analytical exam- 

ination of the behavior of g(e) for the case r = 1 are: 

1) g(8 ) is antisymmetric with respect to 

2) g(6) passes continuously through zero at 8 = P = I *  
3) de -+ 1 .  

4 )  2 is always negative for n 2 - %+ 1 
26 * 

5) is zero at e = 0 , e = 2 and negative elsewhere 

.h 
6 ,  d e  

is positive then negative for 0 4 & g 1 , negative then 

7) The amplitude of g(e) is zero at the linear neutral 

y+* 
421 stability limit, n = 

No analytical method for integrating the system of Equations (1-93) 

and (1-94) or the equivalent second order equation 
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h a s  been found f o r  p h y s i c a l l y  r easonab le  v a l u e s  of  n . A numerical  

method i n s t e a d  has  been s u c c e s s f u l l y  employed. Th i s  numerical  t echnique  

w i l l  now be  ou t l ined .  

The system of  Equat ions ( I -93) ,  (1-94) p r e s e n t s  two d i f f i c u l t i e s  

t o  s t r a igh t fo rward  s t e p  by s t e p  i n t e g r a t i o n .  The f i rs t  problem is  t h a t  

- (0) and - (1) a r e  i n f i n i t e .  The second i s  t h a t  t h e  two boundary 

c o n d i t i o n s  g2(0) = 0 , 

dg2 d g l  
d f  d 4  

g l ( l )  = 0 , are g iven  a t  oppos i t e  ends of t h e  

range of  t h e  independent v a r i a b l e  3 . The f i r s t  d i f f i c u l t y  i s  e a s i l y  
9 
L 

overcome by in t roduc ing  t h e  dependent v a r i a b l e  

governing system o f  Equat ions ( I -93 ) ,  (1-94) i s  then  t ransformed i n t o  

t h e  fol lowing p a i r  of equa t ions  f o r  G l ( 3 )  , G 2 ( 3 )  : 

G ( 7 )  = % ( y )  . The 

9; 

i s  always non % i s  always non-pos i t ive  and 82 where t h e  f a c t  t h a t  

negati-ve has  been used ,  and t h e  p o s i t i v e  v a l u e  of  t h e  square  r o o t  i s  t o  

be taken.  I t  i s  c l e a r  t h a t  -(1) and - (0) are n o t  i n f i n i t e  a s  

long  a s  g ( 0 )  i s  f i n i t e .  

dG1 dG2 
d 3  d‘J 

The second d i f f i c u l t y  cannot  be removed and f o r c e s  t h e  use  of  an  

(1-101) 

(1-102) 

9; Because the p o i n t  8 = 1 i s  a s i n g u l a r  p o i n t  o f  t h e  equa t ions  t h e r e  i s  
no guarantee  o f  f i n d i n g  a unique s o l u t i o n .  However, many numerical  
i n t e g r a t i o n s  have been performed and i n  every  c a s e  only  one s o l u t i o n  f o r  
each n could be found .  
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iteration scheme to integrate Equations (I-lOl), (1 -102) .  This 

iteration proceeds as foll-ows. A value of G (0) is guessed. This, 

along with the boundary condition G2(0) = 0 , provide initial values 

for integration. The system of equations is then integrated step by 

1 

step, using a standard differential equation "package" that is basically 

a Runge-Kutta scheme, up to i s  then com- 

pared with zero. If it is zero, (actually, of course, within some arbi- 

f = 1 . The value of Gl(l) 

trarily small error) the integration of the equation is complete. If, 

however, G1 is non zero, a new value of G1(0) must: be selected and 

the process continued until G (1) is zero. The new values of G1(0) 

are selected by using a form of the Newton-Raphson method for finding 

roots. 

1 

For most values of n the above described integration and iteration 

process converges rapidly. When n approaches the neutral stability 

value, however, the iteration converges much more slowly and the integration 

scheme is effectively limited to values of n that differ from - 'II+ by 

very small amounts. 

4 1  

Figure 4 shows the form of the pressure waves predicted at x = 0 

by integrations of this kind for a range of values of n . The function 

plotted against 0 is go 3 , which, by the definition of f( e) , 

is equal to P 

tical consideration of the equations, the slope of is always negative 

for n 7 - '+ and is zero for some value of 3 between 0 and 1 

when n 6 - ' i -  . Also, the slope of g is seen to be negative and 

infinite at 8 = 1 . 

%+ 1 
f (o ,e )  
2 ?5M 

. It is seen that, as was predicted through analy- 

2 8  

2 x  

BO and a+ 1 Figure 5 shows a plot of the peak to peak amplitude of 
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g(o) - g(2) , as functions of displacement 
1 + 1  of the amplitude of the shock 

. It is seen that the if+ 1 from the linearly stable value of n , n = - 41 

growth in shock amplitude is surprisingly linear as n increases. Also, 

the peak to peak amplitude conincides with the shock amplitude for 

n 2 -  ’+ , and is larger than the shock amplitude for n 4 . x+ 1 
2 %  

Figure 6 shows pressure wave shapes close to the stability limit. 

A s  this value of n is approached, the positive slope of g(e) at 

e =  0 and 8 = 2 becomes larger and larger, and the maximum and mini- 

mum of g(g) move closer and closer to 8 = 1/2 and 8 = 3 / 2  , respec- 

tively. Indeed, the tendency at the stability limit seems to be toward 

a wave shape that has a zero amplitude shock and a slope of at 

both g = 0 and 8 = 2 , that is symmetric about e = 1/2 in the 

region 0 6 8 f 1 , and that is symmetric about e = 3 / 2  in the 

region 1 ,d 8 & 2 . This kind of behavior is consistent with the results 

of the analytical examination of the governing equation at the stability 

limit, n =- ’+ , performed earlier. 
4Y 

In summary, it may be said that for the case 
f t  

= 1 , the following 

facts about periodic solutions to the governing equations are true: 

1) The amplitude of the discontinuous waves is zero at the 

stability limit and increases in a nearly linear fashion as n is increased 

from its neutrally stable value. 

2) A l l  the waveforms of finite amplitude exhibit discontinuities, 

though, in the limit as the neutrally stable value of n is approached, the 

jump tends to zero,and, near the stability limit, the peak to peak amplitude 

of the wave is larger than the shock amplitude. 

3)  No periodic solutions exist for n 4 7 If+ 1 . That is, the 
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linearly stable region for p = 1 

stable in this nonlinear analysis. 

is still predicted unconditionally 

4 )  The character of the decay in pressure after the shock is 

strongly dependent upon the value of n . For large n the decay 

becomes very steep and tends toward classical “sawtooth“ decay. For n 

the decay is more sinusoid in nature; increasing after % + I  near - 
4’6 

the shock, then decreasing, then increasing again before the shock. 

c) Discontinuous Solutions for a Rational Fraction Less Than Unity 

2q 41 , the solution of Equatior, (1-78) becomes 
/ 

When /+t = 2 4 , 
more difficult. Because the region 0 6 8 5 2 is now to be considered 

as consisting of 2 sub intervals rather than just two, the convenient 
antisymmetry property of the solutions found for = 1 does not hold 

(O) + R ( 2 )  
2 can not be taken equal when p 4 1 . This means that k = 

to zero, and, therefore, that T. will not necessarily be zero. 

When = 1 , the value of 8 for which g(e) must pass through 

zero is fixed by the antisymmetry requirement to be 0 = = 1 . For 

/A c 1 no such simple means of determining the zero of g(e) (if one 

exists) is apparent. This deficiency is important, since the knowledge 

of the zero of g(e) was crucial in the numerical integration scheme 

used when ,& = 1 . 
integration process, analogous to the condition g(1) = 0, used when 

Even if a simple condition for starting the numerical 

,U = 1 , were found, one would still be faced with the problem of guessing 

the other (1 - 1) initial conditions and then performing the (1 - 1) 
iterations required until a solution satisfying that condition was found. 

For large ,( this would be a formidable task indeed. For this reason, when 

/.i < 1 
the governing first order nonlinear equation is not broken down 
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into 1 nonlinear first order equations not containing time-lags as 
, but, instead, the integration of the original was done when 

equation including the lagging variable effect is attempted directly. 
r = I  

Equation (1-78) may be rewritten in the following form 

(I- 103) 

where = (g - k), and the fact that a + b = 8 +  1 has been used. 

The boundary condition g(0) + g(2) = 2k becomes (0) + v(2) = 0 . 
Since the jump in g at 0 = 2 is positive, the jump in (y must 

also be positive. This implies that ( 0 )  must be greater than zero 

and that u/ (2)  must be less than zero when g($) is discontinuous. 

Further, because, for any periodic discontinuous solution, c// (0) is 

positive and v(0) + v(2) = 0 , it is clear that must pass through 

zero somewhere between Q = 0 and €9 = 2 . This value of e is des- 

ignated . 

Equation (1-103) may be rewritten as follows 

/ d e  
Then, at 0 = 

/ 

(1-104)  

(1-105) 

The quantity on the right hand side of the above equation must be zero if 

is continuous at 8 = . For, if it were positive, it would mean 

that at some earlier e q 2 / 2  must have been negative. This is not acceptable, J 



- 48 - 

since represents a physical quantity (the pressure) and can't be 

complex. On the other hand, if the right hand side were negative, it 

would mean that as e increased from , q 2 / 2  would become nega- 

tive. This is equally unsatisfactory for the same reason. Thus, if 
rc 

(# passes through zero at 0 = Q 

is t o  remain real, then 

if y/ ( e" -,u) 

(6 -p)  = - 
is to be continuous, 

. In this b and if 

case, then, in addition to the boundary condition ( 0 )  + ( v ( 2 )  = 0 that 

any periodic discontinuous solution to (1-103) must satisfy, there is 

b also the condition (y (a-p) = - 
the solution to always be real. This means that of the family of solutions 

satisfying Equation (1-103) for a given n(a and b) and ,U with different 

values of k , there must be one solution, for some value of k , that in 

addition to satisfying the boundary condition y/ (0) + (2)  = 0 also 

ol+l)k in order for there satisfies the relationship (e'-p) = - 
to be any real solution to (1-103) with (e' -,&) continuous. No solu- 

tions of this type have been found. 

k ( b +  to be satisfied in order for 

b 

In all cases investigated (numerically) 

it is found to be impossible to satisfy simultaneously both the boundary 

condition ( 0 )  + p(2) = 0 and the condition for the continuity of 

Fortunately, another possibility exists. This is the possibility 

d V 2 / 2  
d e  

that (e" -p)  may be discontinuous. If this were the case, then 

could have a negative value as it approached 

increasing 8 and a positive value as e increased away from e =g, 
provided the jump in were large enough (recall that these con- 

ditions with respect to the sign of - d y 2 / 2  must be satisfied if w (e) 
is to be real). A t  e = 5, :cy,',, might then have two values depending 

8 in the direction of 

(3) 

de 
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upon whether 5 w e r e  approached from t h e  l e f t  (e nega t ive )  o r  

t h e  r i g h t  (r ’ I2 p o s i t i v e ) .  Only one d i s c o n t i n u i t y  i n  

allowed, and t h i s  i s  a t  e = O(or 8 = 2 ) .  Consequently,  i t  i s  seen  

t h a t  cc/ ( e” -p) 
must pass  through ze ro  a t  8 = /& i n  t h i s  ca se .  Also, i f  k 7 0 , 

2 
(e ) i s  

may be d i scon t inuous  on ly  i f  e” = ,U . That i s ,  11/ (e) 

+ 1)k (1 i f  d w L / 2  i s  t o  be nega- 
b 2d* qp ( p )  = p(2) must be less than  

t ive  as 8 /u from t h e  l e f t .  Of cour se ,  ‘‘k / *  w i l l  be p o s i t i v e  
d e  

a s  e __+ /t from t h e  r i g h t ,  s i n c e  y‘ (0) 

p o s i t i v e .  I f ,  on t h e  o t h e r  hand, k 4 0 t h e n  

8 --+ /u from t h e  l e f t ,  simply because k 4 

b > 0 . However, a s  8 --? /u from t h e  r i g h t ,  t h e  c o n d i t i o n  

Y(O) 7 b d e  

g e n e r a l ,  then, i t  i s  r e q u i r e d  t h a t  

t i o n s  t o  e x i s t  w i th  

and b = 2x11 are always 

i s  n e g a t i v e  as d W2/2 

0 , ( 2 )  L 0 , and 

(‘+ ‘Ik must be s a t i s f i e d  i f  d w 2 / 2  i s  t o  be p o s i t i v e .  I n  

+ 1 ) k  I w (o)/ > (I f o r  real  s o l u -  b 

( p )  = 0 . 
The s a l i e n t  f e a t u r e  of s o l u t i o n s  of t h i s  type ( t h a t  is  wi th  y ( p )  = 0) 

i s  t h a t  de  + - 00 a t  e = /A . This  i s  because as Q ---+ /-t from 

t h e  l e f t ,  - d ( y 2 / 2  i s  n e g a t i v e  and non z e r o ,  w h i l e  i s  p o s i t i v e .  Conse- 
d e  

d v  1 d*/2 LY ---t - 00 . S i m i l a r l y ,  a s  q u e n t l y ,  s ince  - = 
d e  v d * 2  

8 _j ,u from t h e  r i g h t ,  

’ d e  

dVJ I2  i s  p o s i t i v e  and non zero wh i l e  y‘ i s  d e  

n e g a t i v e ,  s o ,  a g a i n ,  - dV/ ----t - 00 . The i m p l i c a t i o n  h e r e  i s  t h a t  f o r  

s o l u t i o n s  t o  Equation (1-103) i n  which (p) = 0 , the f u n c t i o n  w (e) 
and i ts  f i r s t  d e r i v a t i v e  are cont inuous a t  t h e  p o i n t  8 = 

s l o p e  of y /  i s  nega t ive  i n f i n i t e  a t  t h i s  p o i n t .  

d e  

p and t h a t  t h e  

For  the s p e c i a l  ca se  f.4. = 1 i t  w a s  found t h a t ,  s t r i c t l y  on the  b a s i s  

* = Y -  = I ’  the 
of  t h e  antisymmetry o f  t he  s o l u t i o n  with r e s p e c t  t o  

f u n c t i o n  (y (e) For t h i s  s p e c i a l  c a s e ,  t h e n ,  went through zero a t  e = ,u, 



- 50 - 

the only possible solutions for 

rather than the type where qp ( Z) is continuous. Consequently, one 

might expect that the solutions for 

V/(,U) = 0 , merely for consistency of form with the solutions forp = 1 . 

( e )  were of the type (#J (p) = 0 

C 1 would exhibit the behavior P 

This is indeed the case. Solutions of Equation (1-103) satisfying 

the boundary condition +J (0) + v(2) = 0 , and also the requirement 

(Y(/L) = 0 

readily found for a wide range of values of n and . The numerical 

integration of (1-104) which produces solutions of this type will now be 

discussed. 

that are real everywhere in the interval 0 ,C 8 L, 2 are 

Because of the fact that Equation (1-103) exhibits a lagging variable, 

the value of the function v /  ( e )  must be given in an interval p units 
before the start of any step by step numerical integration scheme. This 

is, of course, in contrast to the usual problem of numerical integration 

of an ordinary differential equation of first order with no lagging variable, 

in which the value of the function only need be given at the starting point 

of the step by step integration process. 

is unknown originally for the problem under consideration, indeed, the 

stated purpose of the integration of Equation (1-103) is to find the form 

of y (e) . Consequently, it can be seen that one must guess the form 

and value of the function 'y (e) 
continuity in order to begin integration at the discontinuity. With this 

im mind, the actual method used to integrate Equation (1-103) will now be 

presented. 

The form of the function v/ (e) 

over an interval /.t units before a dis- 

A solution of Equation (1-103) for some value of /" = and n is 
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desired. Consequently, the values of a and b are fixed in Equation 

(1-103). The value of the parameter k = &( 

the moment. 

is not known for 0 )  + g(21  
2 

It is therefore simply given some arbitrary value so that 

the integration may proceed. 

,U = 1 , the problem of the infinite slope of 

solving for 

is begun at 

A s  in the integration scheme used when 

(e) is avoided by 

h) f y(e) instead of for 9 (e) . The integration 
2 

, where = 0 , and proceeds in the direction of e = P  
decreasing 8 towards 8 = 0 . This is done so that the condition 

w ( p )  = 0 

simple Runge-Kutta scheme is used to integrate the equation 

will be automatically satisfied by any solution found. A 

(1-106) d e  
as 0 runs from p t o  zero. There is a positive sign before the first 

term on the right hand side because it has been shown that cc/ (e) 

be non negative between zero and 

term reflects the fact that v /  (e) 
positive. The second term on the right hand side contains the function 

must 

/ A ;  the negative sign before the second 

between ,u and 2 must be non 

y (  e -,u) which must be guessed. 

After guessing (e-/u) , integration may proceed and will result 

in some function (e) for the interval 0 5 e ,L p which passes 
through zero at 8 = p .  Step by step integration of  the equation 

is now carried out using the Runge-Kutta technique starting from 

and progressing in the direction of  increasing 8 up to 8 

8 =,u 

= 2P.  
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The signs on the right hand side again result because 

negative for 0 ,L 9 ,C pand is non positive f o r 1 5  0 2 . 
(e) is non 

The function y ( e - p )  is simply the function y ( e )  between 8 = 0 

From = 2r and 

to e = 2 the following equation must be integrated 

Q = pwhich was just found by numerical integration. 

(1-108) 

where the signs on the right hand side are determined as before, and 

y (  e - p )  is known from previous integration. 

The function y ( e ) , 2  -pi 4 e 4 2 is now compared with the 

function originally guessed for this same interval. In general, of course, 

they will not be the same. In this case the function just found by inte- 

gration for 2 - p  ,d 8 ,1 2 is used as a new initial function and the 

process is repeated with the hope that (e) will eventually converge 

to some function that does not vary from one integration cycle to the next. 

There is no guarantee that such convergence will occur,although intuitively 

it seems reasonable. 

and, moreover, that the convergence is very rapid and surprisingly insensi- 

tive to what the original guess of the function was, at least for most of the 

ranges of n and considered. That is, the technique converges to the 

same function in a few integration cycles regardless of what (or how bad) 

the initial guess for the function was. Because of this, it is possible 

to assume that the function in the interval 2 - p  6 0 5 2 is simply 

a constant and t o  start the integration under this assumption. Again, 

convergence to the same final function occurs fairly rapidly even if the 

In fact, it turns out that the technique does converge 

constant chosen to represent the function in the interval 2-p 5 8 5  2 
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is as much as an order of magnitude different from the mean value of 

the final solution in that interval. 

Once a function y/ (e) which repeats itself cyclically and passes 
through zero at 

necessary to check and see if it satisfies the boundary condition 

8 = /cc is found using the above procedure, it is 

must If it does not,new values of 

be selected and the functional iteration repeated until the boundary con- 

dition is satisfied. In general, new values of k are selected through 

the use of a form of Newton's method for finding roots. For some values 

of n and p two different values of k may produce different solutions 

which both converge and satisfy the boundary condition q ( 0 )  +y(2) = 0 . 
In this case the solution for the lower value of k converges much more 

slowly than usual and is extremely sensitive to k . For these "lower 

branch" values of k Newton's method is often impractical and a "brute 

force" method is employed to find the proper value of k . In this tech- 

nique 

quantity (Y<o> + q(2) is close to zero. 

0) + g(2) 
2 y(0) + p(2) = 0 . k = 8' 

k is simply changed in decreasing amounts when the value of the 

Equation (1-103) has been solved for a great many values of n and 

in the range 

just described. The ratio of specific heats, '21 has arbitarily been 

taken equal to 1.2 for all calculations. 

0 d/.4 C 1 and . 4 6 4  n C 10 using the numerical technique 

Figure 2 compares the nonlinear stability limit for discontinuous 

solutions with the linear neutral stability curve. The nonlinear stability 

limit separates the regions in the n , 7 plane where discontinuous, 
periodic pressure waves can be found, from regions in which no such solutions 

occur. This limit is obtained by gradually decreasing n for a fixed r 
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until no solutions which are real, and at the same time satisfy the 

boundary condition 4 (0) + (2) = 0 are found. Only the "upper 

branch" values of k are considered when two solutions occur for the 

same n and p. As shown later,the "lower branch" values of k corre- 

spond to unstable periodic discontinuous oscillations. 

solutions are of interest, since, because of their instability, unstable 

solutions cannot represent the regime oscillations in the combustion 

chamber. The smallest value of n giving valid stable solutions is 

then said to be a point on the nonlinear stability curve. The linear 

stability curve is simply the dividing line between regions on the 

plane where small perturbations from steady operation will grow (inside 

the curve) or decay (outside the curve) and is obtained in the same 

manner as it has been previously. 

Only stable 

, r  

Figure 7 shows the nonlinear stability limit again. In addition lines 

of constant shock amplitude have been drawn, in order to represent the 

overall behavior of the amplitude of the discontinuous solutions. All 

the curves shown (including the stability limits) are symmetric with 

respect to p =  1 . For a given n , the largest amplitude oscillations 

are found when the oscillations are resonant ( p =  1) . 
the waves decreases as one moves away from = 1 on a line of constant n . 
Near resonance, for n values of interest, the shock amplitude can be 

quite large. For example, when n = 2 , shock amplitudes (p 

can be of  the order of 10. (This corresponds to - w 5  

M = 0 . 1  , 6 a . 5 )  

The amplitude of 

P 

1 '(0) - p (2) 
2 a M  

or, for 6 
M 

For the most part, the region inside the nonlinear stability curve 

and the region inside the linear stability curve overlap. In this area of 
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overlap the growth of small perturbations is predicted by the linear 

analysis, while, at the.same time, nonlinear analysis predicts the 

possibility of periodic discontinuous oscillations. This suggests 

that, in these regions of the n , 

instability, started by an infinitesimal disturbance, takes, is char- 

acterized by the discontinuous periodic oscillations predicted in the 

present nonlinear analysis. 

plane, the final form that r 

There are, on the contrary, regions in the n , /cc plane for 
which the area of linear instability and the area where discontinuous 

periodic oscillations are possible do not overlap. These regions are 

of two types. 

inside the linear stability limit. On Figure 2 this situation is 

seen to be present for values between 1/3  and 4 / 3  . In the region 

between the curves, linear results again predict the growth of small 

perturbations, however, the final form that the instability takes 

cannot be that of periodic discontinuous oscillations in this case. 

Since Sirignano, 

continuous, finite amplitude oscillations could exist close to the linear 

stability limit, it is natural to expect that the final form the insta- 

bility takes in the region between the curves might be oscillations of 

this type. This will be shown to be the case shortly, using the present 

The first occurs when the nonlinear stability curve lies 

using his method of analysis, found that periodic, 2 

method of analysis. 

The second area where the region of linear instability, and the 

region of existence of discontinuous periodic solutions do not coincide, 

is found outside the linear stability limit for 

for 413 

0 4,U < 2 / 3  and 

4 2 as can be seen on Figure 8 . Here the linear c r  
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stability limit lies inside the nonlinear stability curve. This, 

then, is a region that is linearly stable while, at the same time, 

it is also a region where periodic discontinuous oscillations are 

possible. Clearly, the discontinuous oscillations cannot be the 

final result of  the growth of infinitesimal perturbations in this 

case, simply because infinitesimal perturbations do not grow but 

rather decay to zero in this region. The only other possibility is 

that oscillations that are periodic and discontinuous may be triggered 

by finite amplitude disturbances when n , and p have values in this 

area. 

In Figure 9 the shock amplitude and peak to peak amplitude 

(they are not necessarily the same) of discontinuous period solutions 

are plotted as a function of normal displacement from the linear sta- 

bility curve. The values of n and p on the linear stability limit 
are designated by superscript zero. It is seen that for n ( O )  = 2.52 

( O )  = .28 , an outward displacement from the linear stability 
and P 
curve is a displacement into a region that is linearly stable but where 

periodic, discontinuous oscillations are possible. Outward displace- 

ments from the linear stability curve are taken to be negative and in- 

ward displacements positive. It can be seen from the figure that, for 

positive normal displacements, only one periodic discontinuous solution 

for a given n and /L can be found. Note that an inward displacement 

of this type places one in the region of overlap discussed above. It 

can be argued that this one solution is a stable solution, in the sense 

that small perturbations away from the solution decay back to the solu- 

tion. This has not been proved in the present work, for, indeed, the 
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proof of stability of such solutions seems to be considerably more 

difficult than the solution of the entire problem as formulated. 

However, the facts that small perturbations grow in the region in 

question, (from linear analysis) and that the finite amplitude peri- 

odic discontinuous solutions to the governing partial differential 

equations found in the region are the only finite amplitude periodic 

solutions possible, serve as a basis from which to argue that the 

periodic discontinuous solutions predicted, are stable. For, if a 

perturbation to the steady-state is applied, with amplitude between 

zero and the amplitude of the discontinuous periodic solution, then 

from the standpoint of linear theory the amplitude of this disturbance 

will grow without limit. However, the present analysis shows that 

periodic solutions can be found when nonlinearities in the wave inter- 

actions are considered, in particular, when discontinuous waveforms 

are allowed. One can then claim that any infinitesimal perturbation 

in this region grows in amplitude until nonlinear effects cause the 

disturbance to take the form of the periodic discontinuous solution 

predicted for given values of n , and /4 . For disturbances with 

amplitudes greater than that of the periodic nonlinear solution, since 

there is no other periodic solution in this finite amplitude regime 

above the discontinuous periodic solution, (at least for the range of 

amplitudes of order Mach number) it is to be expected that decay in 

amplitude of such disturbances will occur until periodic oscillations, 

with the discontinuous waveforms that are predicted by the present 

analysis, occur. 

below the amplitude curve for discontinuous periodic solutions eventu- 

Since perturbations with amplitudes either above or 
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ally result in oscillations of the character predicted along the 

curve, then, if the reas~ning presented is correct, the discontinuous 

periodic solutions in this overlap region of linear and nonlinear 

instability are, indeed, stable solutions. 

For normal displacements in the outward (negative) direction, 

on the other hand, two discontinuous solutions are found for displace- 

ments larger than about 0.6 in absolute value. Here it seems reasonable 

to assume that the lower solution is unstable and that the upper solu- 

tion is stable. It is known from the linear results of Crocco that 

infinitesimal perturbations decay to zero in this region,so, if the 

lower discontinuous solution is taken to be unstable, that is, pertur- 

bations away from the solution continue to grow away from the solution, 

then consistency with the linear prediction results, since perturbations 

with amplitudes less than that of the unstable solution decay toward 

zero. Also disturbances with amplitudes larger than that of the lower 

solution would grow away from the lower solution and toward the upper 

solution, which is consistent with the idea of the upper solution being 

stable. The lower solution could thus be considered as a triggering 

limit. That is, finite amplitude disturbances with amplitudes less than 

that of the lower solution would decay to zero, while disturbances with 

amplitudes larger than that of the lower solution, for a given n 

would result in instability with oscillations that were of the form of 

the upper solutions. 

and p ,  

For displacements in the outward normal direction less than 0 . 6  in 

absolute value only one periodic, discontinuous solution to the govern- 

ing partial differential equations can be found. By looking at Figure 9 
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it is apparent that this one solution is of the family of upper solu- 

tions. For the one (upper) solution to be stable it is necessary 

that some unstable solution to the partial differential equations 

exist between zero and the amplitude of the upper solution. For, if 

the upper solution is stable, a disturbance of any amplitude in the 

neighborhood of the solution'amplitude should eventually take the form 

of the stable periodic solution. In particular, the amplitude of  a 

small amplitude disturbance would have to grow. On the contrary, the 

linear analysis predicts that small amplitude disturbances will decay. 

Clearly, a small amplitude disturbance cannot grow and decay simul- 

taneously. Thus, unless there is an unstable solution with an amplitude 

between the amplitude of the upper solution and zero, the linear and 

nonlinear predictions cannot co-exist harmoniously. 

Here, again, recourse to the fact that Sirignano found continuous 

solutions near the stability limit allows expeditious solution of the 

dilemma. For, if guided by his results, one searches for continuous 

solutions in the region in question, he finds that the present analysis 

can predict periodic, continuous low amplitude oscillations that are the 

unstable solutions required. 

Because of the important role that finite amplitude, continuous 

periodic solution play in regions of the n , plane close to the 

stability limit, and since they are necessary to have a complete picture 

of the amplitude dependence of nonlinear periodic solutions, further dis- 

cussion of the discontinuous solutions and their waveforms will be set 

aside until the method of finding the required continuous solutions has 

been presented. 
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d) Continuous Solutions of Finite Amplitude 

In order to find contlinuous periodic solutions to the problem as 

posed, Equation (1-76) is rewritten in terms of g(8) as 

(1-109) 

with g(0) = g(2) as the boundary condition for continuous solutions, 

and where 

to Mach number so that none of the terms becomes small as M + 0 . 
It is to be realized that Equation (I-log), though derived with the idea 

of considering periodic discontinuous oscillations, is also valid for the 

investigation of continuous oscillations. That is, the development that 

resulted in Equation (1-109) (o r  equivalently Equation (1-76)) nowhere 

required that the waveform had to be discontinuous. 

. This equation has been normalized with respect T - 
5 - M 

For the case when a shock wave is present, it is possible to determine 

in terms of the value of g(e ) before and after the shock, and of Tl 
the integral of g(8) over one period. This is because deviations from 

steady-state operation in the chamber can be represented in terms of  g(e) 

to first order. 

of the shock, and therefore on the period of oscillation. Because of this, 

the first order relationship for the dependence of the period on the form 

of g(e) could be derived. When no shock is present, however, there is 

no way t o  determine T, 

and finding periodic solutions. This means that Equation (1-109) can not 

be put in a form similar to Equation (1-78) in which T does not appear. 

Such deviations have a calculable effect on the velocity 

without actually integrating Equation (1-109) 

1 



- 61 - 

If Equation (1-109) is integrated over one period, the following 

relationship is obtained: 

Since g(e) is periodic in 2, and since g is now assumed continuous, 

then g(2) = g(0) , and the left hand side of the above equation vanishes. 

Since a + b = a+ 1 , and since k is non negative,then it must be true 

that lo2g(el)de' = 0 . Any periodic continuous solution to Equation (1-109) 

must satisfy this condition. A solution to the equation 

(1-111) 

that is periodic and continuous also satisfies the condition so2g(e1)de1 = 0. 

Consequently, any periodic (with period 2) continuous solution of Equation 

(1-111) is also a periodic continuous solution of Equation (1-109). The 

problem of finding periodic continuous solutions exhibiting a period of 2 

and satisfying the governing partial differential equations is, then, 

equivalent t o  solving Equation (1-111) for g(8) under the conditions 

that g(0) be periodic in 2 and continuous. 

Two methods of finding such solutions for Equation (1-111) have been 

developed. The first technique, direct numerical integration of the 

governing equation, is obvious and straightforward, but also, unfortunately, 

rather difficult. Since a variable, retarded by the amount , appears 

in Equation (I-llL), again, as was the case for discontinuous oscillations, 
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an initial guess of the function must be supplied for an interval 

units before the start of-the step by step integration process. 

the functional iteration technique used t o  find the waveforms for dis- 

continuous oscillations fails when continuous oscillations are considered. 

This is because the continuous periodic solutions to the ordinary differ- 

ential equation, Equation (I-lll), appear to be unstable. That is, unless 

the correct form of the solution i s  guessed initially, the waveform will 

change in time, and the amplitude will either monotonically increase or 

decrease. 

However, 

In order t o  find a periodic solution (limit cycle) for Equation (1-111) 

then, the following procedure is used. A waveform and amplitude is guessed 

units before the starting point for numerical inte- for the interval 

gration. Step by step integration is then carred out over several cycles 

to see whether the solution grows or decays. If growth is predicted, the 

initially assumed amplitude is decreased until the growth rate decreases, 

becomes small, and passes through zero to become negative. If the ampli- 

tude decays, on the other hand, the initial amplitude is increased until 

the decay rate becomes small, and again passes through zero. In this way 

the dividing line between solutions that grow and decay can be approximated 

and the waveform and amplitude of the oscillation which changes only slowly 

is taken as an approximation of the limit cycle. This must be done for 

each assumed initial waveform. Fortunately, the limit cycle approximations 

that can be obtained are practically the same for any initial waveform that 

does, indeed, produce any approximate limit cycle. These initial guesses 

that result in approximate solutions that do not grow or decay rapidly in 

time are all close to a sine wave in form. Consequently, this waveform can 

r" 
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be adopted as the initial guess for the functional form of the wave. 

Even if one finds a limit cycle for Equation (1-109) for given n , 

p and Tl , the condition that the solution must be periodic in 2 
must still be satisfied. The way in which this is done is to vary the 

value of F1 to see if, indeed, a limit cycle can be found,for some 
value of TI ,  that does have a period of 2. For most values of n 

it is impossible to find any limit cycles at all, regardless 
and /u 
of the value of T ,  . 
not only to find periodic solutions (limit cycles) but also limit cycles 

that have period 2 ; in other words, solutions to Equation (1-109) of the 

type required. 

even on the IBM 7094) to perform the many iterative steps required to 

find periodic solutions within a reasonable limit of accuracy. 

Near the stability limit it is possible, however, 

It is unfortunately, very difficult (and time consuming, 

Because of these difficulties that straightforward numerical integra 

tion present, it is natural to look for a simple analytical method for 

finding approximate solutions to Equation (1-111). Such a technique has 

been found and is, indeed, the second method of solution of Equation (1-111) 

mentioned earlier. This method will now be presented. 

When the expansion parameter e was first introduced, it was defined 

as the product of Mach number and some function of n and ji of order 

one or less called H(n 

H(n , p )  should become small at values of n and 

bility limit in order to be consistent with the predictions of linear analysis 

Actually, from looking at Figure 9 it is seen that H(n , I )  is double 
valued for some values of n , and p . Indeed, near the stability limit 

must tend to zero at 

. It was also mentioned at that time that ,r ) 
close to the sta- r 

( O )  = .28 , while the lower value of H(n 
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the stability limit for consistency with linear analysis, the upper value 

clearly remains of order unity. Thus, when it is said that H(n , p )  -t 0 , 

this means the lower value of H(n , p )  -P 0 . The fact that H(n ,p = $  
becomes small near the linear stability curve, (indeed, it must be zero 

on that curve) implies that the amplitude of g(8) = $ should also be 

small near the stability limit, and vanish at the stability limit, in order 

to be consistent with linear results. 

to the amplitude of  g(0) 

then be used in order to find approximate solutions to Equation (1-111) 

valid when n and p are close to the neutrally stable values predicted 

by linear analysis. This small amplitude parameter will be called 6 and 

will be more specifically defined later. 

This suggests that a quantity related 

may be taken as a small parameter, which might 

.ss 
The function g(0) as well as the quantities n , and and Tl 

are then expanded in power series in s 

If these expansions are substituted into Equation (I-lll), then, to first 

order in 6 , the following equation results 

(1-112) 
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By introducing the definition d = 2x11 , so that 

where d(O) = 2Vn") , d(l) = 2 8 n(l) , d(2) = 2 8  n(2) etc. , Equation 

(1-112) may be written 

(1-113) 

Solutiomof the form is an arbitrary constant) satisfy 

Equation (1-113) provided the following relationships, obtained by equating 

g (') = A sinrg (A  

the coefficients of sinrfe and cosrre on the left and right hand sides 

of the equation, are satisfied 

7r (1-114) 

Y + l  - 
1- c o s r p ' " '  (1-115) 

d ld 

Equations (1-114) and (1-115) give, respectively, the first order (in M) 

period on the linear stability limit, and the relationship between n 

defining the linear stability limit. Both expressions are identical to the 

ones obtained by Crocco in his linearized treatment. In the present 

analysis an ordinary differential equation, resulting from a nonlinear anal- 

ysis, has been linearized in order to obtain t h e  conditions at the stability 

limit that are given by Equations (1-114) and (1-115). In the analysis of 

Crocco, on the other hand, the governing partial differential equations 

themselves, as well as the corresponding boundary conditions, were linearized. 

and p 

1 
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However, identical expressions were obtained in the end. 

Before proceeding to a second order analysis, it is convenient to 

define & as the amplitude of the first order solution. Then, 

To second order in 8 , Equation (1-111) implies the following 

equation for g (2) 

(1-116) 

A solution to Equation (1-116) is found by first assuming 

g (2) = &sin2 TTe + p cos2 W e  . 

Equation ( I - 1 1 6 ) ,  and equating the coefficients of 

s i n r e ,  and 

equation produces the following four equations that must be satisfied 

Then,substituting this expression into 

sin2re, cos2T0 , 

c o s r e  on the left and right hand sides of the resulting 

(1-117)  

(1-118) 
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(1-119) 

(1-120) 

Substituting the expression for d(O) given in Equation (1-115) 

into Equation (1-120) yields 

(/-- c 0 3 T / U b ' ) ~  
(1-121) 

Differentiation of Equation (1-115) with respect to /4 ( O )  gives the 

following expression for the slope of the linear stability curve 

t 4 d  
- s  

2 .'r (1- cosrp) (1-122) 

Comparison of Equations (1-121) and (1-122) shows that the predicted first 

order displacements from the linear stability curve on the d , 

are along the tangent to that curve. A s  such they are trivial and, without 
r 

l o s s  of generality, d") and f (I) may be taken to be zero. If d (1) 

are zero, then a l s o ,  by Equation (I-119), = 0 . 
and r 

Equations (1-117) and (1-118) together form a system of two linear 

relations for o( and (3 . This system is easily solved to give & and 

p in terms o f  d") ,r (O) , and . 
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(1-123) 

(1-124) 

To second order, then, second harmonic components are added to the first 

order, first harmonic solution , while no displacement from the 

linear stability curve in the n , 
, P  

plane is predicted. r 
The third order equation for g(3) is 

(1-125) 
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The function g(3) is assumed to have the form g (3)= C sin3 rh + D cos3 ne. 

I The coefficients of sin3xb and cos3be on the left and right hand 

sides of the equation obtained by substituting this form for g (3) 

Equation (1-125) are then equated, and the coefficients of 

cosre on the right hand side are set equal to zero. 

four expressions 

into 

sinre and 

This results in 

(1-127) 

(1-128) 

(1-129) 

The linear stability curve is generated by Equation (I-115), which 

may be rewritten 

(1-130) 



- 70 - 

Equat ion (1-129) may be w r i t t e n  

(1-131) 

Both s i d e s  of (1-131) are now divided by . I f , f u r t h e r ,  

2 and 3 a r e  de f ined  r e s p e c t i v e l y  a s  u n i t  v e c t o r s  a long the  /cc a x i s  

and t h e  n a x i s ,  then Equation (1-131) becomes 

(1-132) 

where 

and 
I 

2 6  4 10G1 = +I= t p j 2  
4 a* v 
[rn r e p r e s e n t s  t he  u n i t  normal t o  t h e  curve G = 0 i n  t h e  d i r e c t i o n  P G  

of i n c r e a s i n g  G . From t h e  way i n  which G has  been de f ined  t h i s  

v e c t o r  always p o i n t s  i n s i d e  t h e  curve G = 0 . The r i g h t  hand s i d e  of 

Equation (1-132) i s  t h e r e f o r e  the inward normal displacement t o  t h e  l i n e a r  

s t a b i l i t y  curve p r e d i c t e d  by t h e  t h i r d  o r d e r  a n a l y s i s  j u s t  c a r r i e d  o u t .  

It i s  only dependent on q u a n t i t i e s  a t  a given p o i n t  on t h e  l i n e a r  s t a b i l i t y  

curve (n(O) yp(o))  . For convenience,  8 
d iv ided  by 6 , i s  d e f i n e d  

t h e  normal displacement 

2 
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(1-133) 

m e n  & is positive, an inward normal displacement is indicated, when 

08 is negative, the displacement is in the outward normal direction. 
(2)  to be on the normal to the curve G = 0 at a 

and P 
(2) For n 

given point, the following relationship must hold 

L 

(1-134) 

I f  Equation (1-134) is combined with Equation (1-128) and (1-129) the 

following expression, which gives the second order correction to 

for the normal displacemen: given in Equation ( I -133) ,  results 

4 
(1-135) 

The constants C and D multiplying the third harmonic terms are found, 

by simultaneously solving Equations (1-126) and ( I -127) ,  to be 

(1-136) 
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(1-137) 

The analysis just carried out to third order in 6 predicts that 

finite amplitude, continuous, periodic solutions can be found, for a 

given point on the linear stability curve, at a point displaced d 
units away from the curve in the inward normal direction. The waveform 

of the solution is given through the constants O C ,  ( 3 ,  C and D 

which multiply the second and third harmonic components. The period of 

the oscillation is the sum of ‘f, ss ( O )  and T1(’) , the latter given 

in Equation (1-135). Thus, for any point on the neutral stability curve 

it is possible to find finite amplitude periodic continuous waves in 

regions very close to the curve, where the condition that is a 

small quantity is satisfied. 

Sirignano * used a similar technique t o  find finite amplitude continu- 

ous waves near the linear stability limit for the first longitudinal mode 

of instability. In his analysis, however, it was the governing partial 

differential equations that were solved rather than a single ordinary dif- 

ferential equation derived from those equations. Consequently, the manip- 

ulations he had to perform were about an order of magnitude more voluminous 

than those required for the analysis just presented. On the other hand, 

an advantage of solving the partial differential equations directly, rather 

than first manipulating the partial differential equations into an ordinary 



- 73 - 

differential equation, 

are obtained can be fc 

is that the stability of the solutions that 
,-? 
L 

md-directly. Sirignano found that displace 

ments into the region of linear stability led to stable finite amplitude 

periodic solutions, while displacements into regions of linear stability 

produced solutions that were unstable. 

Since, to obtain the ordinary differential equation that has just 

been solved it was necessary to impose a periodicity requirement, it is 

not possible to easily ascertain whether the solutions to that ordinary 

differential equation (Equation (1-111)) are stable solutions of the 

governing partial differential equations. 

the results of Sirignano, and normal inward displacements from the linear 

stability curve are assumed to produce stable periodic continuous solu- 

tions, while outward displacements are taken to indicate unstable periodic 

solutions. 

Instead, recourse is made to 

Periodic continuous solutions to Equation (1-111) have been found, 

using the expansion technique just presented, for all values of 

of interest along the linear stability curve for fundamental mode longi- 

tudinal oscillations. Because of the similarity of form of Equations 

(1-111) and (I-78), the relationship between solutions of the equation 

n and /A 

values displaced symmetrically from the line that was r = for r 
found earlier when discontinuous waveforms were being considered, holds 

as well in the case of continuous waveforms. That is, if a continuous 

periodic solution to Equation (1-111) is found for Some 

rational fraction of 2 less than unity, call it 

same value for n , a solution for a Of - 
and is found simply by rotating the solution for 

r that is a 
, then, at the PI 

exists, 

180' . A s  
r 
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is below resonant, then the solution P I  before, if the solution for 

for 2 - p l  will be above resonant and vice versa. In particular, 

for ,U = 1 

period must be 2 . 
continuous solutions must be resonant, that is, their 

Figure 10 shows a plot of  8 , the normal displacement coefficient, 
as a function of /cc . 
the line 

The curve is obviously symmetric with respect to 

, as it must be according to the preceding discussion. 
/ U = l  

is positive for 2 1 3  cp 4 413 , indicating inward normal dis- 
9; 

placements. Stable periodic continuous solutions to Equation (1-111) 

close to the linear stability curve for these values of ,U are therefore 

predicted. On the other hand, when 0 4 4 2 1 3  and 4 1 3  dy 4 2 r 
is negative. For these values of p the displacements are in the 

outward normal direction, and the periodic continuous solutions to Equa- 

tion (1-111) that exist near the stability limit are unstable solutions. 

It must be remembered that the solutions that have been found using 

a power series expansion to represent g(e) are valid only as long as 

5, the expansion parameter, is small. If A is defined as the normal 

displacement from the linear stability curve at a given point, then, using 

the third order results (in b ) just obtained, the following relationship 

between d , A , and bB holds 

6 = \ 1 $ - -  (1-138) 

Extensive numerical integration of Equation (1-111) has shown that for each 

point on the linear stability curve there is a value of 

no continuous periodic solutions can be found. This value of the normal 

A beyond which 

displacement from the linear stability curve at which continuous solutions 

ik The fact that the sign of  o& changes at ,U = 213 
IO )  (0 i and = 4 1 3  is 

a consequence of  the sign change in c% at these points. The changing 
sign of PC can be seen in Equation (1-123). 
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(cr 

are no longer possible will be called A . a" is a very small number 

when the nonlinear stability limit for discontinuous solutions is inside 

the linear stability limit. In this region of the n , p plane 0 
is also small, but enough larger than so that $ at ;j: (call 

it g) is a small number, say of the order of 0.2 . For example, when 

1, 
Iv 

( 0 )  = .8 , 4 takes its maximum value in the region .67 Cp 

p(O) , has a value of .08 . r, 
= .0043 . At the same value of 

Using Equation (1-138) this gives a value of T of .23 . For 

C 1 .33  , then, it is to be expected that the continuous periodic 
-67 Y 
oscillations in the region between 5 and the linear stability limit are 

sufficiently well approximated using a power series expansion technique 

which includes terms through O( s3)  in order to solve Equation (1-111). 
Indeed, the numerical solutions to Equation (1-111) that have been found 

in this region verify this, as long as A is not too close to 4 . 
(v When p C - 6 7  o r  p > 1.33,  on the other hand, though 0 and 

can be O ( 1 )  or larger. 3 
& 

I 1 

a a r e  both still small numbers, the ratio - 
Consequently, by looking at Equation (1-138) it is seen that a l s o  must 

be of order unity. When s is this large it is not likely that a power 

series approximation to g ( e )  gives a good representation of g(o) , 

especially when only three terms in the power series are used. Therefore, 

numerical integration of Equation (1-111) must be relied upon to find con- 

tinuous periodic solutions near b = in this case. (see Figure 11) 

e) The Matching of Discontinuous and Continuous Periodic Solutions 

Numerical integration of the ordinary differential equation governing 

the form of the pressure oscillations, Equation (I-76), has shown that for 

normal displacements from the linear neutral stability curve on the ,r 
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& 

plane less than a certain value, A , only continuous solutions can 

be found, while for normal displacements greater than d” only dis- 

continuous solutions can be found. Therefore, at A = % a trans- 

ition from continuous to discontinuous oscillations is predicted and 

the normal displacement can be considered as a kind of matching 

point for the two families of waveforms. It is of interest to inves- 

tigate the character of the governing equation, and the solutions to 
/v 

that equation, as A 4 A . 
I In the investigation of discontinuous solutions presented earlier, 

the governing equation, Equation (1-76) was rewritten in the form 

(1-103) 

where y/ = (g - k), and the boundary condition on is p(0) + p(2) 

= 0 . In order for a periodic discontinuous solution to Equation (1-103) 

to satisfy the boundary condition p(0) + v(2) = 0 , it is necessary 

that $b pass through zero somewhere in the interval 0 6 0 6 2 . 
In other words g(8) = k for some value of 8 . The value of e for 

which this occurs has been shown earlier to be 8 =, p .  At this point 

d e  
tinuous solutions to Equation (1-103) can be found with the amplitude of 

g ( e )  sufficiently large compared with k so that passes through 

A s  /AI decreases toward /z/ , however, the zero at 

amplitude of g decreases, while k /  increases, until, at /b/ + /z/ , 
the amplitude of g tends asymptotically to 1 kl . Also ,  as . 

- d(Y is infinite. For / A  > /a/ it is found that periodic discon- 

* = P * 

__+ /E /  , the shock amplitude of the discontinuous oscillations 
decreases faster and faster relative t o  the rate of decrease of  the peak 
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to peak amplitude of the oscillation. The indication seems to be that as 

/ A  I + /f/ the shock- amplitude tends to zero. For /d < /a/ 
is always positive or always negative and it is impossible to 

satisfy the condition p(0) + p(2) = 0 . 
point where = 3 apparently corresponds to the point where the 
amplitude of g is equal to 1 k / . It is to be recalled that 

Thus, it is seen that the 

- 
N - Tl . This means that at d -+ A the amplitude of k = - -  7-1 = 

M 
g tends asymptotically to I ?,/ . 

For /A1 4 the continuous periodic oscillations that 

g(o) are found are characterized by the fact that the amplitude of 

is less than / Tl I . 
Equation (I-lll),  derived earlier, is 

I 
The governing equation for continuous oscillations, 

(1-111) 

with the boundary condition g(0) = g(2) . It is clear that if the ampli- 

tude of g(8) is less than/?J , it is impossible for 

infinite unless 1 1 is infinite. This is the case for all periodic 

continuous solutions with 

%L ever to be d e  

/ /z / ,  that is, for all possible con- 
tinuous solutions. This is in contrast with the result for discontinuous 

oscillations. There all solutions to the governing equation exhibit an 

infinite slope at 6 = ,U. A s  / d ] increases toward 1 a/  it is 

found that the continuous periodic oscillations grow in amplitude, while 

at the same time IT,] decreases. Indeed, as Id I + /a / the mini- 

mum value of 

continuous' solutions approaches zero. A s  / A  1 --P 1x1 
possibility that 

= 

U / g + T ,  I in the interval o 6 8 F 2 for the periodic 

, then, the 
5%- 
d B  

may become large exists, and also the amplitude of 
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= 
g (  e) 

ing character of the continuous waveforms as /dj+/r/may be seen 

approaches IT, I for continuous periodic solutions. The chang- 

in Figure 12 . Normal displacements are measured from the point on 

the linear stability limit where 

seen to have steep positive peaks followed by a longer, shallower nega- 

(O) = .28 . The waveforms are lM 

tive peak. The first (positive) peak becomes larger and the slope of 

the curve preceding the peak steeper as /a / is increased. Finally, 

when for a certain value of 8 , and, as 

is seen in Figure 12 , the slope of g tends to become infinite. It 

is interesting to note that Sirignano observed a similar blow up of the 

s 
/ A /  _3 1x1, g + - T 1 

steeper peak in the pressure wave as displacement from the linear sta- 

bility curve increased, even though his analysis treated the governing 

partial differential directly, and no equation similar to Equation (1-111) 

was involved. This blow up of the solution was taken by him to mean 

that only shock-type solutions existed at large displacements. Since 

this "blow up" occurs at A = and since discontinuous periodic 

oscillations have been found for / /, the present work verifies 
his surmise. 

From the preceding discussion it is concluded that at a normal dis- 
/y 

placement from the linear stability limit of A the amplitudes of 

either discontinuous or continuous periodic oscillations are asymptotically 

equal to the corresponding first order correction to the absolute value 

of the period of oscillation divided by the Mach number. 

This has particular significance for periodic solutions along the 
zm 

line ,iJ= 1 . When = 1 it has been shown that = 0 . This 
w 

N 

means that A = & = 0 . In other words, no periodic, continuous solu- 



- 79 - 

tions of finite amplitude are possible when = 1 . This is in agree- 

ment with the numerical arzd analytical results obtained previously when 

discontinuous waveforms were considered. There it was concluded that 

discontinuous solutions exist right up to the linear stability limit. 

The impossibility of finding finite amplitude continuous solutions when 

( O )  = 1 is also reflected in the fact that C and D , the third r 
harmonic coefficients in the representation of g as a power series in 

6., become infinite at this point (as may be seen in expression (1-136) 
The conclusion must be drawn that when /" = 1 and (1-137). 

possible continuous periodic solutions to Equation (1-111) are zero ampli- 

tude oscillations on the linear stability limit. 

the only 

Though, for either discontinuous or continuous oscillations it is 

true that the amplitude is equal to IFl/ at b =x, it has not yet 

been shown that T ,  is the same for both continuous and discontinuous 
solutions. That is, the actual matching of the two families of waveforms 

at d = A has yet to be shown. In order to indicate the kind of match- 
f l  

ing that does occur, the amplitude, first order correction to the period, 

and the waveforms for both continuous and discontinuous periodic oscilla- 

tions will now be presented as functions of 4 , for normal displacements 

from two points on the linear stability limit. The two points chosen, 

( O )  = .28 , are selected as being representative,re- P Y 

/ U ( O )  = .80 and 

spectively ,of regions where A is positive (normal displacements into 
w 

regions of linear instability) and A is negative (normal displacements 

into regions of linear stability). 

Figure 13 shows a plot of the amplitude of  f(e)/M (equivalently 

at x = 0 )  as a function of inward normal displacement from the 
2 YM 
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point on the neutral stability curve where /,t(O) = .8 . Stable, peri- 

odic, continuous solutions can be found only for displacements less than 

b = .0042 . The curve of peak to peak amplitude as a function of normal 

displacement, , is seen to have the parabolic character predicted 

when the method of power series expansion in t$ is used to find contin- 

uous solutions to the governing equation, Equation (1-111). For normal 

displacements somewhat larger than A = .0042 , discontinuous periodic 

solutions are readily found and the curve of peak to peak amplitude as a 

function of A can be drawn as in Figure 13 . As one approaches 

values of close to .0042 , however, the numerical technique presented 

earlier that is used to integrate Equation (1-78) becomes badly behaved 

and the number of iterations required to converge on an acceptable dis- 

continuous waveform increases greatly. Indeed, because of this, between 

A = .0042 and = .01 no solutions of this type were generated. The 

curve of  the peak to peak amplitude of discontinuous solutions is there- 

fore arbitrarily continued in a reasonable, if hypothetica1,manner in 

this interval. This continuation is indicated by the dashed lines in 

Figure 13 . It is seen that the curve of  peak to peak amplitude for dis- 

continuous solutions seems to agree with, and blend into the corresponding 

curve for continuous solutions very well, even if the dashed portion of 

the curve is not considered. Also shown in Figure 13 is a curve of the 

shock amplitude of the discontinuous solutions. The end of the curve, 
m 

for displacments close to d , is hypothetical, and has been drawn making 
* 

use of the fact that at 4 = b the shock amplitude must be zero. 

Figure 14 is a graph of - Tl/M as a function of  4 . Again the 

curve is composed of two parts; one part for A 4 a = .0042 which 
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T for stable periodic continuous oscillations, and the 1 represents 

second part for A 7 - which represents r' for stable discontinu- 

ous periodic oscillations. 

1 

A s  was the case for the plot of amplitude 

against A , the two portions of the curve seem to blend into one 

another very well, even though near A there is a gap (represented 

again by dashed lines) where the numerical method employed could not easily 

be used to produce the anticipated discontinuous solutions. It is to be 

noted that, even though the oscillations change from continuous waves 

to discontinuous waves, the period of  oscillation seems to change in a 

continuous manner through this transition. Moreover, the period of 

F, 

I 

oscillation appears to decrease in a nearly linear fashion as 4 in- 

creases. 

Figure 15 shows f/M as a function of 8 for two values of A 

-EL at at /A(') = .80 . By Equation ( I - 5 4 ) ,  f/M is equivalent to 2 v M  

x = 0 . Though the waveforms are similar in that they both show infinite 

slopes when 

;'c 

8 = p , they both are discontinuous, and for both 

f ( 7 )  d 7 = 0 , it is seen that for the larger value of , f is 

always decreasing between the discontinuities, while for the smaller value 

of d , f decreases, reaches a minimum and increases again. This seems 

to indicate that as A and the amplitude of  the shock increase the wave- 

form tends toward a sawtooth form and away from a form with a more sinus- 

oidal shape. It is also apparent in the figure that the shock amplitude 

and peak to peak amplitude coincide for the larger A , while the peak to 

peak amplitude exceeds the shock amplitude for the smaller . 

Two continuous waveforms at normal displacements of A = .001 and 

A = .004 for the same P")  are shown in Figure 16 . The waveforms 
I 

/ 

7': Note that because changes with A , two different values of 
are associated with the two different values of A . 
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show the sharp positive peak and the shallower smoother negative peak 

that were seen to be the case for normal displacements at ( 0 )  
/J = .28 . 

Here again as A increases the positive peak becomes larger and 

sharper, as may be seen by comparing the two waveforms. 

The dependence of the peak to peak amplitude for both continuous 

and discontinuous periodic solutions to Equation (I-76), on the outward 

normal displacement, 

for discontinuous solutions on 

point on the linear stability limit where P(O) = .28 . The curve of 

peak to peak amplitude for unstable periodic solutions, (the lower curve) 

A , and the dependence of the shock amplitude 

for the A , are shown in Figure 9 

is seen to be composed of two parts representing discontinuous and con- 

tinuous periodic solutions. The two curves match well where d = A = 
r* 

.042 , even though numerical integration for discontinuous solutions was 

not continued right up to d = d" . The interval where no discontinuous 

solutions were found is a small fraction of A in this case. Here 

again, dashed lines represent hypothetical continuation of the curve for 

discontinuous solutions. The curve of shock amplitude as a function of 

A shows that the shock amplitude of  unstable discontinuous solutions 

decreases as d" is approached. The dashed line continuation of this 

curve is drawn subject to the condition that the shock amplitude at 
* a= A is zero. 

Figure 17 shows - T / M  as a function of d for the same point 

on the linear neutral stability curve, ,&(O) = .28 . A s  was the case 

( O )  = .80 , the two portions of  the curve representing continuous 
for P 
and discontinuous solutions match well. Here, however, the behavior of 

Tl is very nonlinear as I 4  1 increases. For the case of stable 
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discontinuous solutions (the upper curve) it can be seen by comparing 

Figures 9 and 17 that-as the amplitude increases the oscillations 

become more off-resonant. This was also found to be the case for the 

stable solutions at p(O) = .80 . The unstable periodic solutions, 

on the other hand, become less off resonant as 16 / is increased, 

independent of whether the amplitude is increasing or decreasing. 

Figure 18 shows two discontinuous waveforms predicted at a normal 

displacement of -.11 from the point on the linear neutral stability 

curve r ( O )  = .28 . Two waveforms occur because both a stable discon- 

tinuous periodic solution and an unstable discontinuous solution are 

found for this value of A . The larger amplitude waveform is the 

stable solution. It is seen that the shock amplitude is a larger fraction 

of the peak to peak amplitude for the stable solution. The decay in f 

following the shock is quite different for the two waveforms. The unstable 

solution behaves in an almost sinusoidal manner after the shock. In fact 

the amplitude of this "secondary oscillation" is almost 55% of the peak 

to peak amplitude of the total waveform. The decay in pressure after 

the shock for the stable solution is less wild; the "secondary oscillation" 

represents only about 14% of the overall peak to peak amplitude. It should 

be noted here that waveforms for unstable oscillations have very little 

practical meaning since, due to their instability, they cannot exist for 

any finite period of time and could never be observed. 

(O) = .28 have P Continuous waveforms for normal displacements at 

been discussed earlier. They appear in Figure 12 . Here again the com- 

ment with r e s p e c t  to the meaning of  unstable waveforms made above applies. 

A l l  the waveforms that have been presented so far are representative 
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of pressure oscillations at the injector face, x = 0 . (Note that 

because the expression for p' is the same at x = 0 , and x = 1 , 

the waveforms at the injector and nozzle are identical.) 

some interest to see the pressure waveform at an intermediate value 

of x , and also to see the pressure wave shape in space at a fixed 

value of time. These waveforms are presented in Figures 19 and 20 

respectively. 

It is of 

f) Relaxation of the Restriction of p to Rational Fractions 
I 

of Two for Discontinuous Periodic Solutions 

A l l  discontinuous periodic solutions to Equation (1-78) that have 

r been presented so far have been obtained under the restriction that 

must be a rational fraction of two. It will be recalled that this restric- 

tion allowed a simple relationship between solutions to Equation (1-78) 

for /" values symmetrically displaced from f = 1 

when f is a rational fraction of two, numerical integration of Equation 

(1-78) was somewhat easier. It is not true, however, that the restriction 

of p 
city and convenience. It can be shown, in fact, that there is no basic char- 

acteristic in the governing equation, Equation (I-78), which restricts 

to rational fractions of two when f(e) is discontinuous. Equation (1-78) 

is written 

to be derived, Also, 

to rational values of two is applied merely for the sake of simpli- 

El. 

(I- 78) 

where 

9 =  7 

fi 
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If g is discontinuous at some 8 , for convenience say 6 = 0 , it 

has been shown that, at B = r,(g - k) must pass through zero and 

3 must be infinite if periodic solutions are to be found. Even when 

,& is irrational one can integrate Equation (1-78) numerically,subject 

to this restriction and the boundary condition g ( 0 )  + g(2) = 2k , and 

find solutions that are apparently periodic in two, as required. However, 

the function f(e) thus obtained turns out to be very peculiar indeed. 

This can be seen through the argument which follows. 
n 

then at 8 = 2 p i ,  dLg is = P  d (P2 
iii is infinite at e d e  - 3  

Since 

d-g is infinite, and, in general, at 8 

is infinite. The function g(e) (and therefore 
= j p  3r’ d o2 infinite, at 8 = 

(j an integer) !.!&- 

f(e)) is not analytic at any of these points. If /A is a rational 

fraction of 2 , say 3 , p , q integers, then if the region 

0 & 8 ,C 2 is divided into q sub intervals; 0 C 0 4 - , 

d @j 

4 
2 
4 

4 9 4 2i , i an integer less than or - L e < - , - - - -  2 4 
4 4 4 4 
equal to q , the function g ( e )  will be non analytic only at the q 

points separating the intervals, (i.e. at e = 0 , e = - , 

- - 8 = 2) and will be a well behaved analytic function over each of 

2 e = - - -  4 
4 4 

the open sub intervals. Moreover, these non analytic points are repeated 

cyclically. That is, if, at 8 = ‘/4 , the jth order derivative of g 

is infinite, then also at 6 = (iu + 2 the jth order derivative will 

2 be infinite. For example, when p = 5  Y then at 0 = 5 
ative of g is infinite, at 8 = - the first derivative is infinite, 

5 
at 0 = - the fourth derivative is infinite, at 8 = - the second 

derivative is infinite, and at 8 = 0 and 0 = 2 the function i s  d i s -  

continuous. If one examines the following cycle , 2 8 L 4 , he finds 

the third deriv- 

6 8 
5 5 
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8 
5 that the infinite second derivative at 8 = - causes an infinite 

3rd derivative at 8 = 2 - , that the discontinuity in the function 
causes the first derivative to be infinite at 8 = 2 7 , that the 

infinite third derivative at 8 = 2 - causes an infinite fourth 

derivative at 8 = 2 - and that the infinite first derivative at 

4 8 8 = 2 - cases at infinite second derivative at 8 = 2 - . It is 5 5 
2 

clear that the infinity in the 3rd derivative of g(e) at e = - 5 ’  

is also present at 8 = 2 + -  ; and that the same is true for a11 
the non analytic points, that is, they are all periodic in 2 . 

2 
-5 

4 

2 
5 ’  

6 
5 

2 
5 

When /” is irrational, on the other hand, the number of points 

at which g(e) is non analytic in the interval 0 ,L 8 ,L 2 becomes 

infinite because the original discontinuity is propagated in intervals 

that are irrational fractions of the total interval. In other words, 

the effects of the original discontinuity will never be felt exactly 

at the 8 value at which a later discontinuity occurs. In this case, 

though g and its first derivative appear to be continuous and periodic, 

g is non analytic at an infinite number of points in a given cycle, 

because higher derivatives are infinite and, moreover,the character of 

these points where g is non analytic varies from cycle to cycle (note 

that as 8 becomes very large the difference between succeeding cycles 

resides only in the very high order derivatives of g ) . In the limit as 
€3- 00, however, it is clear that a limit cycle with period 2 must 

9: 
exist . 

Since = r, the statement that /cc must be a rational fraction 
7- 

of two in order for periodic discontinuous solutions to exist is 

equivalent to the statement that + must be a rational fraction of the 
~~~ 

f: This follows from the fact that solutions for f that are continuous in 
f and its first derivative can in principle be found using the numerical 
methods described previously. 

~~ 
~~ 
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period. 

used, etc., and there seems to be no reason why it should be restricted 

to values such that /c^ is a rational fraction of 2 . 
is restricted to rational values, one is led to the conclusion that for 

some values of 

discontinuous solutions exist, even at points on the 

that are in 3 region of nonlinear instability as defined earlier. 

does not seem reasonable on a physical basis, and thus gives credence to 

the idea that periodic solutions exist also when 

2 is physically related to injector design, propellants 

Thus, if p 

that are physically realistic, no really periodic P 
, /LA 

This 

/c" is irrational. 

Moreover, any irrational p can be approximated with arbitrary 
that is a rational fraction of 2 . It is unreason- /L" accuracy by a 

able to expect that periodic solutions to the governing equation exist 

for values of 

not at the irrational values themselves. Such behavior would, indeed, 

plane such that along a line of constant produce regions on the 

n , there would be, at the same time, an infinite number of points where 

discontinuous periodic oscillations were possible and an infinite number 

of points where none could occur. This is in contradiction to the natural 

expectation that a continuous change in the combustion parameters should 

produce a continuous change in the type of pressure oscillation possible. 

Consequently, one is once again led to the conclusion that periodic solu- 

tions should exist for irrational 

and that the restriction of p to rational fractions of 2 is merely a 

convenient artifice useful in the symmetry proof presented earlier. 

/c" that are arbitrarily close to irrational values, but 

n y  P 

that are rational P as as /c" 

In summary, there seems to be no reason why periodic solutions should 

be found only when /y is a rational fraction of 2, while there are strong 
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mathematical and physical reasons for expecting periodic solutions 

also to be found for irrational/.& . 
that periodic solutions do exist when 

form can be approximated with arbitrary accuracy by integrating the 

governing equation at a rational /A value arbitrarily close to the 

Consequently it is to be expected 

is irrational and that their pb 

in question. Because of this it is r irrational 

of regions of nonlinear instability in the n , 

restrictions on . Also the curves of amplitude P 

possible to speak 

plane with no 

against normal dis- 

placement, and first order period against normal displacement, can be 

interpreted as truly continuous curves and not as curves with an infinite 

number of "holes" in them occurring where /u takes irrational values. 

g) Stability Limits in the n , Plane 

All results that have been presented so far are given in terms of 

. It is of interest to see how these results might look 
and P 

expressed, instead, in terms of n and . 
/Lc , the stretched time-lag, enters the analysis just presented in 

the second order boundary condition at x = 0 . It appears in the term 

. Since f is O(M) and M is O(M) , the term as 

n+- - - -  1 3 ' 9  

2 
-P M l n  f(@ 

a whole is O(M2) . On the other handp = - r= (1 
where T, is O(M). At first glance then, the difference between 

nMSf(@ - p )  
indeed the case as long as f(g) is continuous. When f(e) exhibits 

a discontinuity or shock of O(M) , however, then nMXf(8-p) and 

- 2  T 

and L(nM . f ( 6- 8 seems to be of third order. This is 

nM 5f( e - e )  can differ by an amount of O(ML) in the neighborhood of 

and e are 
M y  /Lc the discontinuity. Therefore, to second order in 

not simply interchangeable and must be related through the expression 
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r = l p  ' , at least when discontinuous waveforms are.possible. 
4 

Because T, may be'represented as T ,  = MT(n , p )  , where 7 
depends only on n and ,U (and on whether one is considering stable 

or unstable oscillations, when both are present), 7, 
as M increases and will be different for every M at a given n and 

Since f? = (1 + 2) /f to the order-under consideration, it is 

will increase 

TI 
p . 

also apparent that is proportional to the Mach number and is dif- 

ferent for every Mach number at a given n and f . Thus, from a 

single curve in the n , 

be drawn on the n , plane,depending on the value of M chosen. 

,U plane, an infinite number of curves may 

In order to give an idea of how the stability limits change as one 

plane to the n , e plane, a Mach number n y / C c  transforms from the 

of 0 . 3  has been selected for the transformation. A Mach number of 0 . 3  

is relatively large and should emphasize the changes in shape that occur. 

Figure 21 shows the nonlinear stability limit for discontinuous oscilla- 

tions and the linear stability limit on the n , 2 plane for this value 

of the Mach number. The curves that appear in Figure 21 are the trans- 

formed form of the cuwes in Figure 2 . It can be seen that the stability 

limits in the * plane are no longer symmetric with respect to the 
line 2 = = 1 . The asymmetry is evidenced in the greater degree of 

spreading of the stability limits for e 1 . Comparison of Figure 21 

n , 

with Figure 2 shows that in general the stability limits are wider in 

n , 

ity limit as well as the nonlinear stability limit is distorted by the 

'k space than in n , /" space. It is seen that the linear stabil- 

transformation. This is because, even along the linear neutral stability 

curve, T, is nonzero except at I = ' .  
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The difference between the stability limits on the n ? plane 

plane.is not too large even for M = 0 . 3  , the P and on the n , 

maximum difference being about 20% for n C 5& 3.5 . As M 

gets smaller, the difference between the curves on the n plane 

and the n , 

M 0 they must be identical. 

plane also becomes smaller, and, in the limit as P 
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CHAPTER I1 

DISTRIBUTED COMBUSTION 

A .  Presentation of the Model and the Governing Equations 

In this chapter the concentrated combustion assumption will 

be relaxed and an analysis will be presented that allows the consider- 

ation of more general axial distributions of combustion. The types of 

combustion distribution to be considered will be restricted to those 

that are sufficiently spread along the axial dimension of the combustion 

chamber so that the derivative of the mean gas velocity in steady opera- 

tion is of the same order of magnitude as the mean gas velocity. Most 

of the other assumptions used in the first chapter will also be employed 

here. These are: 

1) The short nozzle condition is employed. That is, the Mach nwn- 

ber at the entrance of  the nozzle is taken to be constant. 

2) The chamber is assumed to have a constant cross sectional area. 

3) The flow is taken to be one dimensional. 

4 )  The chamber gas is assumed to be homocompositional and calorically 

perfect. 

The homoentropic assumption used in the first chapter is relaxed here. How- 

ever, though entropy variations will be taken into account, entropy waves 

excited by such mechanisms as mixture ratio variations will not be considered. 

Using the above approximations and assumptions, partial differ- 

ential equations describing the flow in the chamber may be set down for all 

regions of the chamber not containing discontinuities. 

resent the physical requirements that mass, momentum and energy be conserved. 

These equations rep- 
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Conservation of Mass 

(11- 1) 

where w "; 

unit volume, L L ~  

elements and fn 

s," W'{xl ,t)dxl , W" is the rate of production of gas per 

represents the velocity of  the liquid propellant 9%- 

7'; 
is the mass of liquid droplets per unit volume of gas. 

Conservation of Momentum 

* 
represents the rate of acceleration 

OB** p9" 9r 

>k + up dt* J t  
where - = - 
a liquid propellant element experiences. 

Conserqation of Enerpy 

2 -1. J- 

= hi + - u  2 * represents the specific fotal energy of the 8 his hi s where 

liquid propellant, including chemical energy, and 

rate of change of this energy in a frame of reference moving with the 

represents the 
OB t* 

liquid droplets. 

Two more assumptions will now be introduced in order to uncouple 

the equations of the gaseous motion from those of the liquid propellant 
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1 
elements .  

t h e i r  l i n e a r  a n a l y s i s  of d i s t r i b u t e d  combustion, assumes t h a t  h i s  

a cons t an t .  The second assumption requires t h a t  

o r d e r  f o r  t hese  assumptions t o  be v a l i d ,  t h e  e x t e n t  of d r o p l e t  h e a t  up 

must be small  and t h e  drag  f o r c e s  on t h e  d r o p l e t  should a l s o  be  s m a l l .  

S ince  both d r o p l e t  hea t  up and drag e f f e c t s  on t h e  d r o p l e t s  remove energy 

from t h e  gasdynamic f i e l d ,  both e f f e c t s  are s t a b i l i z i n g .  Moreover, Crocco 

has  shown t h a t  t h e s e  e f f e c t s  a r e  small compared wi th  t h e  e f f e c t s  of com- 

bus t ion  and nozz le  admit tance.  Consequently, by ignor ing  t h e s e  e f f e c t s  

t h e  s t a b i l i t y  s i t u a t i o n  i n v e s t i g a t e d  i s  s l i g h t l y  worse than  might be 

expected i f  they were inc luded  and, t he re fo re ,  t h e  r e s u l t s  of t h e  p re sen t  

a n a l y s i s  must be considered a s  be ing  s l i g h t l y  p e s s i m i s t i c .  

The f i r s t  of these ,prev ious ly  used by Crocco and Cheng 
* 

i n  

9 s  
Jc 

be cons t an t .  I n  ut 

5 

Two a d d i t i o n a l  equat ions  a r e  s t i l l  r equ i r ed  i n  o rde r  t o  have 

Equat ions (11-l), (11-2), (11-3) r ep resen t  a system of 3 equat ions  i n  t h e  

dependent v a r i a b l e s  f , u and p . The f i r s t  of t h e s e  equat ions  is  

simply t h e  equat ion  of s t a t e  f o r  a p e r f e c t  gas 

(11-4) 
* 

b w + i n  terms of t h e  p r e s s u r e  p , by us ing  The second equat ion  expresses  

t h e  t ime- lag  p o s t u l a t e .  

ax* 
This  equat ion  w i l l  be in t roduced  later.  

Using t h e  equa t ion  of s t a t e  and t h e  f a c t  t h a t  t h e  gas considered 

i s  c a l o r i c a l l y  p e r f e c t ,  Equat ion (11-3) may be r e w r i t t e n  i n  a form i n  which 

(11- 5) 
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All variables will now be made non-dimensional by using the following 

definitions 

9; 
x = -  X 

L* 

9; 
The subscript R indicates conditions at x = 0 under steady operation, 

and L* is the length of the chamber. 

Using these new variables Equations (11-1), (11-2) and (11-5) 

become 

(11-6) 

(11-7) 

(11-8) 

B .  Solution of the Governing Partial Differential Equations 

, u , and w are separated P , P  The dependent variables 

into steady-state parts, indicated by superposed bars, and time variant 

parts indicated by primes. 

Thus 

(11-9) 
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The primed quantities are then represented by power series expansions 

in terms of  the Mach number at the entrance to the nozzle, . Thus 

u' = u + u + u + - - - -  1 2 3 

+ - - - -  P' = P1 + P2 + P3 

(11-10) 
w' = w1 + w + w + - - - -  2 3 

The expansion parameter used here is similar to the one used in the study 

of concentrated combustion in that both are proportional to the mean 

level of combustion in steady-state operation. In the present analysis, 

however, the requirement that the unsteady parts of the dependent variables 

must vanish along the linear stability limit in the n , plane will 

not be carried explicitly in the expansion parameter. That is, no function 

like H(n ,P) multiplies the Mach number as was the case for concentrated 

combustion. Of course, it makes no difference in the final result whether 

such a function is included or  not. 

If the time derivatives are suppressed in Equations (11-6), (11-7) 

and (11-8) the following steady-state equations result 

d x  

dx 

(11-11) 

(11-12) 

$: It is a l s o  assumed that the nth order term in any power series expansion 
has derivatives with respect to both x and e that are of nth order. 
This can be shown to be valid as long as 3 - - O(%). - - - - r lY  
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The last equation may be written in the equivalent form 

(11-13) 

(II- 14) 

- 
y -  1 - 2  where the fact that 6 = E + - u has been used. A solution to 

Equation (11-14) is 

into Equation (11-13) and the resulting equation solved simultaneously 

along with Equations (11-11) and (II-l2),then the following relationships 

are found 

2 

LS = has = 1 . 
s f  

If this relationship is substituted 

(II- 15) 

(11-16) 

- 
where it has been noted that u ,L M 5 . Also,  u 1  has been taken 

to be of the same order of magnitude as % . Essentially, this means 

that the injection velocity must be smaller than or equal to the nozzle 

entrance velocity. For rocket engine designs of interest, this is 

usually the case. In any event as 0 , u1 must also --j 0 if 

a true steady-state situation is to occur. 

Equation (1-16) indicates that giving the steady-state velocity 

profile is equivalent, at least to O(%’) , to giving the steady-state 
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mass source distribution in the chamber. Also, since w(x) represents 

the total rate of mass introduction in the chamber between x = 0 and x , 

then % 
chamber in the steady-state. Moreover, since h = 1 , also repre- 

sents the total rate of energy added t o  the chamber by combustion in the 

represents the total rate of mass production in the entire 

S 

steady-state. The condition requiring that the combustion be sufficiently 

distributed axially can now be stated simply as - - - O(i) = O(%) . d; 
dx 

Before proceeding to solve the system of equations, Equations 

(11-6), (11-7), (11-8), t , the time coordinate will be stretched follow- 

ing the procedure used in the first chapter. The independent variable 8 

is therefore introduced, where 

2 and T1 is O(%) , T, is O(% ) , etc. This transformation will 

cause periodic solutions of the equations for p , u and f to have 

periods of 2 to all orders of approximation, as long as a solution to 

the problem exists that is periodic in t with a period T differing 

from 2 by an amount of O(%) . 

The term &A! appears in all three of the governing partial dif- 
a x  

ferential equations for f , u , and p . Consequently, it must be 

expressed in terms of these quantities before solution of the equations for 

these three quantities is possible. 

of the Crocco time-lag postulate. 

the case of distributed combustion, using the time-lag model, was originally 

derived by Crocco and Cheng. 

relationship for w' 

This is accomplished through the use 

The expression for the burning rate in 

This development resulted in the following 1 
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I chamber the equation can be written 

may be related d r  where is the sensitive time-lag. To first order - 
to the pressure as it was in the first chapter. 

dt 

Thus 

In the above expression time is measured following a given liquid propel- 

lant element. In a. coordinate system fixed with respect to the combustion 

(11-18) 

is a constant has been used and u 2 is the 9 P where the fact that 

"space lag", in other words, the distance before the station of interest 

at which the propellant element first becomes sensitive to the chamber 

conditions. Using Equation (11-18) to substitute for - in Equation 
(11-17), the following expression for w' results 

dt 

then, if Z is restricted to values of order unity, it is clear that 
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Consequently 
f l k  

0 
(11- 18) 

Differentiation of Equation (11-19) with respect to x yields 

If the stretched time-lag, f , is now introduced, where 

r ,  then Equation (11-19) becomes the following expression = 

T 
in e , x coordinates 

I *  
I 

Note that this expression is O(ME 2 ) , so that w l = o .  

It will prove useful shortly to have an equation which governs 
I 
~ explicitly the behavior of the entropy of the gas in the chamber. If 

* 
s '= -  S - * 
thermodynamics 

, then, by the combination of the first and second laws of 
cP 

3-1  d P  Tds = cfA - - * r  (11-21) 

This expression may be combined with the equations for conservation of 

mass, momentum, and energy, Equations 

to yield an entropy equation 

(11-6), (11-7) and (11-8) in order 

(11-22) 
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In the steady-state the above equation can be written 

If, for convenience, 

s = ( 8 -  l)(; - "1 6 )  = O(% ) . Since ( 8 -  1) is a small number, 

the steady-state entropy variation is seen to be very small indeed. 

- 
s (x = 0 )  is taken to be zero, then 

2 - 2  

Equations (11-7) and (11-8) are now written down, correct to 

first order in , as 

where the corresponding steady-state equations have been subtracted off. 

If the second equation is added and then subtracted from the first equa- 

tion the following pair of equations is obtained 

(11-24) 

These equations would correspond exactly to the first order equations 

presented in Chapter I if the entropy were constant. 

Equations (11-26) and (11-27) have the simple solutions 

(11-25) 

(11-26) 

(11- 27) 

(11- 28) 
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(11- 29) 

Since Equations (11-26) and (11-27) are valid only in regions free from 

shocks,it is in principle necessary to separate the chamber into two 

shock free regions as was done in the case of concentrated combustion, 

and to consider solutions in the two regions separately. The separation 

of the chamber into two regions, regions I and 11, is illustrated in 

i Figure I. In region I 

(11-28A) 

(11-29A) 

~ while in region I1 

(11-28B) 

(11- 29B) 

The functions in the different regions can be related by using the fact 

that u + - 
injector, and that 

is continuous through a shock moving toward the 2 
1 8 -  1 al 

is continuous through a shock moving 2 - -  
u1 21 - 1 al 

P, 
toward the nozzle. 

related to u1 + - 
In order t o  make use of this, u1 + $ must be 

2 - -  
u1 r -  1 al * 

must be related to P 1  
1 Y  

, and u - - 2 
8 -  1 al 

Integration of the equation 

(11-30) 
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representing a combination of the first and second laws of thermodynamics, 

yields the following relationship between p , s , and a 

where it is to be noted that s = 0 at x = 0 under steady-state con- 

ditions. To first order in 5 , Equation (11-31) may be written 

(11-31) 

(11-32). 

where it is assumed that s is expandable in a power series in , so 

that 

The quantity u1 + - 
Since u + - 11- al is continuous through a shock moving toward the 

2 
) and s is O(%) , s2  is O(% ) , etc. s = (sl + s2 + - - - - 
can then be expressed as 1 S 

1 
P1 + - + - .  u1 $ -  1 

is also continuous across y+ji-+= 

2 
8 -  1 al 

2 

S 
1 

P1 injector, it must be true that 

the shock. Because of the fact that the entropy jump across a shock with 

1 S 3 P1 amplitude of O(%) is of O(% ) , the continuity of u -t - +- 1 I 8 - 1  
through a left moving shock,that is, a shock moving toward the injector, 

is also continuous through the shock. This means implies that 

that fr(8- x) 

fact, that any distinction between fr,(e - A) and frII( 8 -  x) is unnec- 

essary. Similar reasoning, applied t o  the case of right moving shocks and 

the quantity 

that fs(8+ x) 

is unnecessary to distinquish between f ( e +  x) in regions I and 11. Con- 

sequently, Equations (11-28) and (11-29)  are correct as they stand for all 

P1 
u1 + 7 

is the same on both sides of a left moving shock and, in 

S 
, yields the conclusions PI - - - -  - - 2 - -  

u1 v-  1 al u1 7( 8 -  1 

is continuous across right moving shocks and that it 

S 

regions of the combustion chamber. 

Two boundary conditions which all solutions to the governing 
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partial differential equations must satisfy are the solid wall con- 

dition at x = 0 , u(x = 0 )  = 0 ; and the short nozzle boundary 
U condition at x = 1 , (--) = % . To first order in these reduce 
x= 1 

to solid wall conditions at both ends of the chamber. That is, 

u (x = 0) = u (x = 1) = 0 . 
Equations (11-28) and (11-29) yields the following solutions for u 

and p1 in terms of an arbitrary function, f 

Applying these boundary conditions t o  
1 1 

1 

(11-34) 

where f s f = - f and f (e) = f(e+ 2) . r S 

As was the case in the study of concentrated combustion, 

it is necessary to perform a second order analysis in order to find the 

function f(e) . To second order in , Equations (11-7) and (11-8) 

become 

(11-35) 

(11-36) 

where the fact that - d; - - O(%) has been used. First adding, then dx 
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subtracting the second equation to the first produces the following 

two equations with their left hand sides in the same form as Equa- 

tions (11-26) and (11-27) 

(11-37) 

(11-38) 

, and bW2 
where Equation (11-20) has been used to substitute for - 

a x  

= * 

The right hand sides of both Equation (11-37) and (11-38) 

and p1 and their derivatives, with u1 contain only terms involving 

which appears in the same way in both bU1 
f 1  be the exception of the term 

1 
The entropy equation, Equation (11-22) must, there- 

s1 
before Equations (11-37) and (11-38) can be 

and s P1 equations. The quantity f can be expressed in terms of 

- P1 
as f 1  'zr s1 * 

- - -  

fore, be solved for 

solved for u and p 2  . To first order Equation (11-22) may be written 
2 

This equation has the obvious solution s = sl(x) . To second order in 1 

(11-39) 
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the entropy equation is 

(11-40) 

ds 
dx where the fact that - = O(s2) has been used. Since we are inter- 

ested only in periodic solutions for the physical quantities, we now 

require that s(2,x) = s(0,x) . This can be expressed in the equivalent 

form 1 0 , where it is understood that the integration 

is carried out with x fixed. Integrating Equation (11-40) from zero 

t o  two and dividing by two then produces the following expression 

JS2 d 8' = 

From Equations (11-23)  and (11-24) it can be seen that 

and p1 ; 'b[f(e- x) + f(e+ x) . Moreover, because f is periodic in 

u1 = f( 9-  x) - f (e+ x) 

f(e'- x)de' = i 2 f i k  x)de' . Thus de' = 0 and 
2 

= 21 6 f(7)dy , Using these results in Equation (11-41) 

gives the following equation 

(11-42) 

or, integrating 

n2 

(11-43) 
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Since u (x=O) = 0 , the constant on the right hand side of Equation 
- 

(11-43) is zero and, finally 

(11-44) 

This means that s is a constant, independent of e and x , that is 

dependent on the first order wave form. Since ( ‘6- 1) is in general a 

small number for most combustion products, it is seen that, to first 

order, the (constant) deviation from the steady-state entropy profile in 

the chamber is small. 

1 

The first order results u 1 = f(e- x) - f(e+ x) , 

= Y [f(e- x) + f( a +  x)] are used to substitute for u 1 and p1 P1 

in the inhomogeneous parts of Equations (11-37) and (11-38). 

hand side of Equation (11-37), call it 

The right 

RA , can then be written 
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Similarly, the right hand side of Equation (11-38), % , becomes 

(11-46) 

k-L))F(8-El)+ ( W Z - @ + ~ ! ! ? ~ + X , , -  

A particular solution to Equation (11-37) which produces RA 

when operated upon by d!- + is found by inspection to be be  a x  

I r 

(11-47) 
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Similarly, a particular solution to (11-38) is 

8 +J-p (11-48) 

The complete solu.tion to Equation (11-37) is given by adding to 

arbitrary second order function of 

solution to Equation (11-38) is formed in a similar manner by adding the 

Pr an 

The complete e - x , 2Fr(8- x) . 
I 

I arbitrary second order function 2F ( 0 +  x) to P . Thus 
S S 

r d 
(11-49) 

(11-50) 

Because Equations (11-37) and (11-38) are only valid in shock 

free regions, the chamber is again considered to be separated into two 

regions, regions I and 11, as shown in Figure I. Then, for region I 
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and for region I1 

+ e r  

+ Er 
(11-51) 

(11-52) 

(11-53) 

(11-54) 

The relationship between FrI and FrII 2 F s ~  and F s ~ ~  2 ’rI and 

‘rII 
done previously, by using the fact that u2 +1f-1 2 a2 is continuous 

2 through shocks moving to the left (toward the injector) and 

is continuous through the shocks moving to the right (toward the nozzle). 

To 

and PSI and PsII must be determined. This is done as has been 

u2 - 3 a2 

2 O(% ) Equation (11-31) becomes 

(11-55) 
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Using the first order result (Equation (11-32)) 

, yields 2 and solving (11-55) for - 8 -  1 a2 

(11-56) 

a )  = (u2 + - 2 Across a left moving shock it is true that 
8 - 1  Z T  

i 
(u2 + - a ) . Using Equation (11-56) this equality may be written 

i f -  1 1- 

(11-57) 

is a constant, independent of whether one is in region “1 Noting that 

I o r  11, and that s2 is continuous through shocks to 0(%2) 

equation r educes  to 

the above 

(11-58) 
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The quantity is simply the jump in pressure across the 

shock wave. Using Equations (11-33) and (11-34) this quantity is found 
( P ~ , ~ ~  - P ~ , ~  ) 

to have the following value 

(11-59) 

where f(0) is the value of f immediately after a shock and f(2) is 

) is simply the value immediately before. 

equal t o  

order expression for 

2 2 
%,I1 - P1,I The quantity 

‘6 (f(0) - f(2)) (Pi,II + , or again employing the first 

p1 ’ 

(11-60) 

Equation (11-58) then takes the form 

(11-61) 

is con- Across a right moving shock the quantity u - - 2 
2 g - l a 2  

(5 - Fz 2 I 3 -  1 a2)II 
2 a )  =(u2-- 2 tinuous. 

at the shock. 

This condition may be written 

Using Equations (11-56), (11-33) and (11-34), this require- 

L ment can be expressed as the following condition on 

shock, analogous to Equation (11-61) 
u2 - $  p2 at the 

(11-62)  
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The particular solution to Equation (11-37)y P r , may be 

written as the sum of two parts - 

I where 

(11-63) 

(11- 64) 

and 

(11- 65) 

P r  is Because f (a -  x) is continuous across left running shock waves, 

also continuous across such waves to the order of approximation considered. 

4 r on the other hand, need not be continuous across left moving shocks 
. ~~ 

can 1 because of its dependence upon f ( 0 +  x) . The quantity u2 + v  p2 
be written in terms of Fr( 8 -  x)I qr and 9 as 
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(11-66) 

Using this expression, Equation (11-61) becomes 

which is valid at a left running shock. vrI = vrII across the shock and that, at the shock 

Noting that, as mentioned above, 

(II- 68) 

and 

(II- 69) 

Equation (11-67) becomes, simply 

(11-70) 

The particular solution to Equation (11-38), Ps may be 

rewritten 

(11-71) 
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where 

;-* 

J 
6+f 

(11- 72) 

and 

Here 

need not be .  u2 - 3 p2 can now be expressed i n  terms of F s ( g +  x) , 

(y and (p S a s  

i s  continuous through r i g h t  moving shock waves, w h i l e  

(11-74) 

Equation (11-64) can be w r i t t e n  a s  f o l l o w s ,  a t  a r i g h t  moving shock wave 

(11- 75) 



Since qsI = psII , and, also 

(11-76) 

while 

(11-77) 

Equation (11-75) reduces to 

~ (11-78) 

I Fr(e- x) Equation (11-70) states that 

shocks, while Equation (11-78) expresses the fact that F (e+ x) is con- 

tinuous across right moving shocks. It will be recalled that the first 

is continuous across left moving 

i 
S 

order functions fr(8- x) and f (e+ x) exhibit this same property 

with respect to shock waves moving in the appropriate direction. Therefore, 

S 

as was the case for the first order functions f 

fluous to distinguish between F and Fs in regions I and 11. 

and fs , it is super- r 

r 

Having shown the relationship between the arbitrary second order 

functions in regions I and 11, it is now possible to apply the boundary con- 

ditions at the two ends of the chamber in a simple way. At the injector end, 

x = 0 , the boundary condition is simply the solid wall condition, 

An expression for u is found by combining Equations (11-49) and (11-50) 

to be 

u2 = 0 . 

2 

(II- 7 9 )  
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Examination of the definitions of P r and P S Equations (11-47) and 

(11-48)y shows that at x = 0 these functions reduce to 

(11-80) 

(11-81) 

when the fact that ;(x = 0) = 0 is used. Equations (11-80) and (11-81) 

show that Pr(x = 0) + (Ps(x = 0) = 0 consequently u 2 (x = 0) becomes 

(11-82) 

Since the boundary condition at x = 0 requires that u 2 = 0 there, 

Equation (11-82) implies the following relationship between the second 

order functions 

(11-83) 

The boundary condition at the nozzle end of the chamber requires 

that the Mach number at the entrance to the nozzle, that is, at x = 1 , 

be equal to . To second order this means 

(11-84) 

Using the first order expression for a in terms of p1 and s1 , 

Equation (11-32), this becomes 

1 
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or, implying the first order expression for p1 in terms of f 

(11-86) 

The particular solution P , evaluated at x = 1 , can be written 
r 

c - 

I -  

J 

8 - 1  e/" 

(11-87) 

where, because of the periodicity of f Y J@-)l f(79 
and f(e- 1) = f(e+ 1) . Also,the fact that ;(x = 1) = 

been used. Similarly, P at x = 1 may be expressed as 
S 
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(11-88) 

Combining Equations (11-87), (11-88) and (11-79) in order to find the I 
I proper expressions for u at x = 1 and then substituting this into 2 

Equation (11-86), representing the boundary condition at x = 1 , yields I 

(11-89) 
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By Equation (11-83), F s ( e +  1) = - Fr(@-F 1) . 
periodicity in 2 , Fr(9+ 1) = Fr(9- 1) . Consequently, the first 

two terms on the left hand side of Equation (11-89) add to zero and the 

equation becomes an equation determining the form of f , the arbitrary 

first order function. T 

evaluated in Appendix A. The final result of that calculation is 

Also, since we require 

, the first order correction to the period is 1 

0 
(11-90) 

Substituting this relation in Equation (11-89) and rearranging, one gets 

(11-91) 

where 

L 

c .  Solution of  the Equation Governing the First Order Function f(e) 

Equation ( I I . -91)  is an ordinary nonlinear, differential-integral 

equation with a retarded variable. 

cated, and more difficult to solve for the function f(e) , than was the 

A s  such it is considerably more compli- 

corresponding equation, Equation (I-76), found for the case of concentrated 
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combustion. Even s o ,  there appears to be no reason, in principle, why 

this equation cannot be infegrated numerically. However, attention 

should be called to the fact that, because of the integral terms, it is 

not sufficient to guess the function 

of a step by step integration process, as was the case with Equation (1-76). 

Instead the function must be guessed over the whole interval 0 ,C 8 c 2 . 
This might render the functional iteration technique used to solve Equation 

(1-76) somewhat less effective in the solution of Equation (11-91). 

units before the starting point 

In the present investigation the integration of Equation (11-91) 

has been attempted for only one steady-state velocity distribution. The 

distribution chosen is simply a constant slope ramp function along the 

axial chamber dimension. ;(x) = uEx = MEx + O(% ) . 3 In other words, It 
du 
dx = % . can be seen that this implies that 

profile the two integral terms in Equation (11-91) become 

With this kind of velocity 

and 

e- 1 
(11-92) 

(11-93) 

Because f(e) is periodic these may be rewritten 

0 

(11-94) 
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and 

J 
0 

Using the expression derived earlier for s , s1 = - ( 8 -  1) - n 1 
du 
dx 

" 

Equation (11-91) for the velocity profile - = % , becomes 

(11-96) 

is not present. Consequently, the equation is simply a nonlinear differ- 

ential equation with a retarded variable, similar in form to the governing 

differential equation in the case of concentrated combustion. If Equation 

(11-96) is integrated with respect to 8 from e = 0 to = 2 , one 

obtains the following condition that any periodic solution to Equation (11-96) 

mus t sat is f y 

(11-97) 

where the left hand side is found to be zero by using the definition of 

C1. 

Equation (11-97) can be satisfied for real gases ( $ 7 0) , and % > 0 , 
only if f(7)dT = 0 . Therefore, any periodic solution (with period 

Because of the fact that A + B = (2k+ 1) , it can be seen that 

two)  to the equation 

(11-98) 
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is also a periodic solution (with period two) to Equation (11-96) and 

the problem is reduced to finding periodic solutions to Equation (11-98). 
n 2  

It should be noted that the requirement that f( 7)d7 = 0 means 

that the first order entropy variation, 

pressure variation and the first order entropy variation both vanish when 

s1 , is zero. Thus, the mean 

ME . Equation (11-98) can du 
dx the combustion is distributed so that - = 

be put in the same form as Equation (1-78) by introducing the definitions 

B , a n d D = - .  A 

% 
, c = -  0) + g(2) 

% 2 g =  f and k = 8( 
ME 

Then 

If C = a and D = b , Equations (11-99) and (1-78) are identical. The 

boundary condition on Equation (11-99) is, of course, the same as the one 

on Equation (I-78), that is 

(11-99) 

Equation (11-99) can be put in exactly the same form as Equation 

(1-78) through a simple transformation of g and n . The function 

h = o(g and m = n + h are introduced, where, as yet, 6 and are 

undetermined constants. Equation (11-99), written in terms of h and m , is 

(11-100) 

f i  h(0)  + h(2) 
2 where k = 
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If the following two relationships are satisfied 

(11-101) 

(11-102) 

then Equation (11-100) will be exactly the same as Equation (11-78) with 

h in place of g and m in place of n . Equations (11-101) and (11-102) 

are easily solved simultaneously to give the following expressions for 

and oi 

These imply that 

(11- 103 j 

(11-104) 

(11-105) 

(11-106) 
- 2 2 f f I  - 

r f /  9 -  
Because of the transformation just presented,the results already 

obtained for g and n for the case of concentrated combustion can be 

considered as results for h and rn for the case of distributed combustion 

(2 = ME). In order to put the results for distributed combustion (under the 

d; restriction dx = p$) in terms of  g and n , the simple relationships given 

in Equations (11-105) and (11-106) need only be applied. 
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Since, to change from the concentrated combustion results to 

the distributed combustion-results only requires multiplying the values 

of g and n by constants, it is clear that the nonlinear and linear 

stability limits will simply be shifted upward on the 

The nature of this upward shifting will be such that for every value of 

n , p, plane. 

p ,  n at the stability limit for distributed combustion with % = %  
will be exactly (-) times as large as the value of n on the sta- r +  1 
bility limit for concentrated combustion. This shifting is shown in 

Figure 22. Also shown in the figure are the linear stability limit for 

the combustion distribution chosen and the linear stability limit for 

concentrated combustion, drawn in for the sake of comparison. The linear 

stability limit for the combustion distribution with 

be found by substituting this steady-state velocity profile directly into 

the results of Crocco's linear analysis for distributed combustion. 

d; 
dx = 

may also 

5 

Either method produces precisely the same result. 

The waveform of a discontinuous solution along the line 

is shown in Figure d; 
dx = ME in the case of a combustion distribution with 

2 3 .  It is, of course, of the same form as the solutions found for the case 

of concentrated combustion. 

It should be emphasized that, though the form of the first order 

function f and the dependence of that form on the conbustion parameters 

n , and , has only been investigated for the simple velocity profile 

(combustion distribution) - dl = 3 , an equation has been derived (Equation 
11-91) that in principle can determine f and its dependence on n , andp 

O ( % )  . d; for any velocity profiie as long as - = dx 

a combustion distribution with the velocity profile - = 

ax 

It should be noted that 
1 
2 '  

2 p.& , 0 5 x f - d; 
dx 
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produces exactly the same stability results as does the velocity profile 

d; - = % . ax 

velocity profiles just mentioned these integrals are identical and, con- 

sequently the governing equation for f (e)  is also the same. 

and Ig . For the two I A  This can be seen by examining 

In conclusion, then, it is felt that the velocity profile 

d; 
dx = 

bustion, and thus that the results for this particular profile characterize 

the influence of distributing the combustion. 

is a convenient opposite extreme to the case of concentrated com- 

Before proceeding to a summary of the results of this thesis, it 

is appropriate to note that the analysis for distributed combustion as well 

as that for concentrated combustion has been restricted to the case where 

only one shock is present. (Equivalently to the fundamental longitudinal 

mode corresponding to a linear analysis.) 

modes of oscillation, that is, more than one shock being present in the 

chamber without great additional difficulty. In fact it can be shown that 

for the case of concentrated combustion or for distributed combustion with 

dx 

modes of oscillation into an equation identical to Equation (1-78). 

It is possible to consider higher 

- -  d; - ME it is possible to transform the equations governing the higher 
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CHAPTER I11 

SUMMARY AND DISCUSSION 

A .  General Considerations 

In summary, the present investigation has succeeded in devel- 

oping an analytical method for predicting whether periodic finite ampli- 

tude axial oscillations may exist in a given liquid rocket combustion 

chamber if the combustion processes occurring there can be represented 

using Crocco's time-lag postulate. Both discontinuous (shock-type) 

periodic waveforms and continuous periodic waveforms for the oscillations 

have been found. The dependence of the ampiitude and the waveform of 

these periodic oscillations on n and z , the combustion parameters, 
has been investigated. Two particular combustion distributions have been 

considered; the first being the limiting case of concentrated combustion, 

the second being the case where combustion is distributed throughout the 

chamber so that the steady-state velocity profile satisfies the equation 
d; 
dx 

the possibility of supporting both continuous and expectations, 

discontinuous finite amplitude pressure oscillations using a combustion 

model with a characteristic time that is of the order of the period of 

oscillation has been demonstrated. 

- O(%) . In general, it may be said that, in contrast to earlier - -  

5 , 2  

B. Analytical Techniques and Results 

It is appropriate at this point to review in a more specific 

way some of the analytical methods used, and some of the results found, 

in the first two chapters. 

Critical to the successful analysis of the problem was the 



- 127 - 

selection of an expansion parameter proportional to, and of the same 

order as, the Mach number at the entrance to the supercritical nozzle. 

If a different expansion parameter, based on the difference between 

energy input and withdrawal from the chamber, was employed, it was found 

that discontinuous periodic oscillations could not be predicted when the 

combustion processes were represented by the time-lag model. It is to 

be noted that this latter kind of expansion parameter was used in all 

previous linear and nonlinear work which employed the time-lag postulate. 

The Mach number at the entrance to the nozzle serves as a mea- 

sure of the total amount of combustion occurring in the chamber in the 

steady-state and also as a measure of the mean flow out of the nozzle 

under steady conditions. It can therefore be thought of as a measure of 

the deviation of the flow field in the chamber from a simple acoustic 

field with no mean flow. Picking the expansion parameter to be propor- 

tional to, and of the same order as, the Mach number in this analysis 

therefore caused the governing partial differential equations for the flow 

field to take the form of simple acoustic equations to lowest order. No 

energy or mass addition needed to be considered to this lowest order. The 

combustion (driving) terms and the nozzle (damping) term appeared only in 

the second order equations and boundary conditions. Because of this, 

standard techniques could be employed in order to relate the first order 

thermodynamic and gasdynamic dependent variables to an arbitrary function 

of order M . Application of the solid wall boundary conditions then 

showed that this first order function was periodic with period equal to 

the acoustic period for the fundamental mode of oscillation. A second 

order analysis then had to be pursued in order to find the form that the 
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arbitrary first order function must take. The second order nozzle 

and combustion terms were found to appear only in the boundary con- 

ditions, (concentrated combustion) or i n  the partial differential 

equations and the boundary condition (distributed combustion). In 

either case it was these terms, combined with the nonlinear wave propa- 

gation terms, that determined the form of the arbitrary first order 

function. 

I 

The second order partial differential equations that included 

the combustion terms and nonlinear effects were solved with relative 

ease, particularly in the case of concentrated combustion. However, 

the integration of the equations introduced two arbitrary second order 

functions. Thus, three arbitrary functions appeared in the second 

order expressions for the dependent variables. Three conditions there- 

fore needed to be applied in order t o  find an equation determining the 

first order function. The three conditions available were the boundary 

I conditions at x = 0 and x = 1 , and the periodicity requirement. The 

boundary conditions were rather easily applied, though the fact that 

Riemann invariants are continuous to second order in shock strength through 

shocks of the proper family had to be used in order to apply the boundary 

conditions correctly when discontinuous oscillations were considered. 

application of the periodic condition, on the other hand, presented some 

difficulties because, in general, the period of the assumed oscillation 

had to be considered different from the period of the first order function. 

In other words, the period could not be taken a priori to be equal to the 

acoustic period but, rather, was taken to have a value within a correction 

of order M of it. The difficulties occurring because of this difference 

The 
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in periods were overcome by introducing a stretched time coordinate, 8 , 

to replace the physical time coordinate, t . This insured that to 

all orders of approximation the period of oscillation in the stretched 

time variable would be equal to the acoustic period. When this trans- 

formation was made, the periodic condition was implicitly applied and, 

therefore, the application of the boundary conditions to the second order 

solutions in 8 , x space produced a nonlinear equation determining if 

periodic solutions for the arbitrary first order function, f , were pos- 

sible and, if s o ,  what their form and dependence upon n and p. was. 
( p  is the stretched time-lag that enters when the time coordinate is 
stretched.) Also,  the equation determined whether the periodic solutions 

were continuous or discontinuous. 

For the case of concentrated combustion the equation determining 

the form of f was a nonlinear, first order ordinary differential equa- 

tion with a retarded variable. For the general case of distributed combus- 

tion the equation was a nonlinear differential-integral equation with a 

retarded variable. However, for the special combustion distribution with 

d; 
= P$ , the governing equation could be transformed into the same equation 

as the one governing f for the case of concentrated combustion. 

Only a little information on the behavior of the ordinary differ- 

ential equation for the case of concentrated combustion could be found 

analytically, however these findings were of some importance in setting up 

the numerical procedure for the integration of the equation. The most 

important result of the analytical examination of the equation was probably 

the discovery t ha t  discontinuous solutions to the equation with the same n 

value, but with r values displaced symmetrically from the line r = 1 , 
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0 could be related by a simple 180 rotation. Because of the way the 

effect of the discontinuity was propagated in time, this simple symmetry 

relationship could only be applied in a strictly correct mathematical 

sense when 

arguments were employed that indicated that the property should a l s o  hold 

for irrational r . 
metrically displaced from 

n and 

This meant also that the nonlinear stability limit had to be symmetric with 

respect to the line p = 1 .  The periods of the oscillations that were 
solutions to the governing equation, on the other hand, were found to be 

antisymmetric with respect to = 1 , In particular, solutions along 

was a rational fraction of the acoustic period. Several r 
Because of  the relationship between solutions sym- 

= 1 , curves of amplitude as functions of 

p = 1 .  
r r were found to be symmetric with respect to the line 

P =  the line 

below resonant 

oscillations. 

/ 
1 had to be resonant oscillations, solutions with 

oscillations and solutions with p ( 1 
These symmetry characteristics of the equation meant that 

above resonant 

numerical integration of the nonlinear ordinary differential equation only 

had to be carried out for in order to find all solutions in the 

interva 1 0 4 4 2 . This interval corresponds to the range of inter- 

est for the fundamental longitudinal mode of oscillation. 

/u 6 1 

In addition to the symmetry properties of the solutions to the 

equation governing f for concentrated combustion (or distributed combus- 

two additional analytical findings are of interest. tion with - = ),  

The first of these is the requirement that the integral of f over one 

period of oscillation is zero. This means that the deviation of the mean 

pressure from the steady-state value must be zero to first order, even when 

discontinuous pressure waves are present. Moreover, for the case of distri 

d; 
dx 
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buted combustion with it implies that the value of the first 

order entropy variation is-equal to zero, since this quantity is propor- 

tional to the mean pressure. It should be noted that the comments just 

made with respect to the mean pressure and first order entropy need not 

necessarily be true for general combustion distributions with 

However, it is likely that, because of the spreading of the combustion, 

- o q  * 
du - - 
dx 

the deviation in the entropy from its steady value should be small, and, 

since the two quantities are proportional, the mean pressure change should 

also be small. 

The second additional analytical result was the finding that dis- 

continuous solutions existed right up to the stability limit when = 1 . 
This agrees with a result of the analysis performed by Sirignano using a 

combustion model that did not consider phasing effects. He also found dis- 

r 
i? 

continuous solutions right up to the linear stability limit. Since the 

line = 1 represents the line along which energy is added in phase 

with the pressure oscillations in the present analysis, the agreement be- 

tween the two investigations is obvious. Moreover, it was found that, as 

one moved along the line 

the amplitude of the shocks increased linearly with the distance from the 

linear limit. The same result was found by Sirignano using his different 

p=  1 , away from the linear stability limit, 

combustion model. 

A s  far as the actual numerical integration of the ordinary non- 

linear differential equation resulting from the study of concentrated com- 

bustion is concerned, little need be said at this point other than repeat- 

ing the fact that the method of functional iteration that had to be employed 

because of the appearance of retarded variable, , in the equation, con- 

it In other words the response of the combustion zone to the pressure oscil- 
lations was instantaneous in Sirignano's model. 
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verged rapidly to the proper periodic solution, if one existed at all, 

for the n and E" value? considered. This numerical technique was 

used to find both continuous and discontinuous solutions. However, a 

convenient method of finding approximate continuous solutions valid close 

to the linear stability limit was also developed. In order to find these 

approximate solutions the governing ordinary differential equation was 

treated by a Fourier analysis technique in which the quantity 

was taken to be a small quantity that vanished at the stability limit, in 

agreement with earlier linear analyses. The agreement between the approx- 

imate solutions and the numerical solutions for continuous oscillations 

close enough to the linear stability limit was found to be very good. 

However, at larger distances from the stability limit, considerable diver- 

gence between the two methods of solution was observed. 

f/M (or f/%) 

Numerical integration of the equation in question for a wide 

range of values of n and permitted the construction of a nonlinear 

stability limit for discontinuous solutions. Inside this curve it was 

possible to find stable, periodic discontinuous solutions. Outside the 

curve no periodic discontinuous solutions at all could be found. Compar- 

ison of the nonlinear stability limit with the linear stability limit 

showed that three regions with different stability characteristics existed. 

The largest region was the region where the area inside the linear stabil- 

ity limit was also inside the nonlinear stability limit. Since, by linear 

analysis, the growth of small perturbations was predicted here, while, at 

the same time, discontinuous periodic pressure waves were also predicted 

by the present nonlinear analysis, the conclusion was reached that the 

predicted discontinuous oscillations in this region were the final form 
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that pressure oscillations would take in a rocket engine that was 

intrinsically unstable because of its n and /A values being in this 

region of linear instability. In other words, the discontinuous periodic 

oscillations were taken to be the regime form of instability in this region. 

It should be noted that much of this region is far from the linear stabil- 

ity limit, in regions where f/M can be quite large. However, the analy- 

sis is still asymptotically valid for small enough M , even when this is 

the case. In contrast to this, the validity of the nonlinear work of 

Sirignano, which predicted only continuous finite amplitude oscillations 

using the time-lag model, was restricted to regions very close to the 

linear stability limit. 

2 

The second region of interest was found to be the region that 

was inside the linear stability limit but outside the nonlinear stability 

limit for discontinuous oscillations. The situation here was found to be 

really quite similar to the one just mentioned, except that the final form 

that intrinsic instability takes in this region was found to be charac- 

terized by periodic continuous oscillations of finite amplitude, rather 

than by periodic discontinuous oscillations. 

The final region of interest was the area that was outside the 

linear stability limit (in a region of linear stability) but inside the 

nonlinear stability limit. It was argued that this was a region where 

the possibility o f  triggering discontinuous periodic pressure oscillations 

existed. This was because, for a given n and /,A in this region, two 

periodic solutions were found, a large amplitude discontinuous solution 

and a smaller amplitude solution that was either discontinuous or contin- 

uous,  depending on the normal displacement of the n , 
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consideration from the linear stability limit. 

solutions were interpreted as being unstable solutions and thus as 

representing a triggering limit, in the sense that a disturbance with 

an amplitude smaller than that of the small amplitude solution at a given 

n and would decay to zero, in agreement with the predictions of linear 

analysis, while a disturbance with an amplitude greater than that of the 

small amplitude solution would grow in time and have the large amplitude 

discontinuous solution as its limit cycle. In other words, though combus- 

tors with n and in this region should be intrinsically stable, it 

should be possible to trigger a discontinuous periodic oscillation by the 

introduction of a disturbance with large enough pressure amplitude. Note 

that the final form that triggered instability takes is predicted in the 

present analysis. Earlier work by Sirignano predicted that triggering 

was possible, but, because of the restriction of  his analysis to continuous 

waveforms, the final form and amplitude of  the oscillations so triggered 

could not be predicted. 

The smaller amplitude 

2 

In the last two regions o f  the n , plane considered, contin- 

uous periodic oscillations were found. In the region where no triggering 

was possible, but where linear instability was predicted,the continuous 

oscillations were found to be stable. In the other region, where triggering 

was possible,the oscillations were taken to be unstable. 

question of how well the continuous solutions matched with the discontinuous 

solutions arose. In the former situation the matching occurred at the boun- 

dary of the region, in the latter it occurred inside the region under inves- 

tigation. The correspondence between the amplitude and period of the con- 

tinuous and discontinuous periodic oscillations was found to be very good 

In both cases the 
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a natural transition from discontinuous to continuous waveforms was inher- 
~ 

in both cases. Also, in both cases the matching point occurred at the 

The salient feature of all the discontinuous waveforms that were 

found was the negative infinite slope at time units after the shock, 

This reflects the fact that a discontinuity in pressure occurring at a 

given instant has an effect on the mass release and therefore on the wave- 

form exactly ,& time units later. Because the combustion term, or mass 

generation term, is one order of  magnitude smaller (O(M ) vs. O(M))  than 

the shock itself, the delayed effect is not felt as a discontinuity in f 

2 

. 

normal displacement from the linear stability limit where the amplitude 

of g became asymptotically equal to \ I: I. This corresponds to the 
point where the nonlinear ordinary differential equation passes from a 

region where singular behavior is possible to one in which no such behavior 

is possible. The former is true for amplitudes of g greater than111 l I  , 

the latter for amplitudes less than \T1 1 . Therefore, it was found that 

The wave shapes themselves were found to be strongly dependent 

on the parameters n and /-f . This was true for both continuous and 

discontinuous oscillations. The continuous oscillations exhibited pressure 

waveforms, generally of a sinusoid nature, with a steep, sharp positive 

peak followed by a shallower negative peak. The sharpness and steepness 

of the positive peak was observed to increase (as well as the amplitude of 

the oscillation) as the normal displacement from the linear stability limit 

I 

was increased. The wave had an arbitrarily steep slope arbitrarily close I 
to the value of the normal displacement where the amplitude of g became 

equal to1T I . I 
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but rather as an infinitely rapid continuous change in f . 
Another characteristic of the discontinuous waveforms was 

their change in shape as the normal displacement from the linear sta- 

bility limit was varied. In general, as the displacement from the linear 

stability limit was increased, the waveforms tended toward the classical 

"sawtooth" form found in one dimensional cavities with no combustion. 

As the distance from the linear stability limit became small, on the con- 

trary, the wave shapes tended to have a more sinusoid nature (except, of 

course, for the infinite slope at 

to those predicted by Chester for driven oscillations near resonance. 

18 

/4 time units after the shock), similar 
3 

The analytical technique that has been presented in this thesis, 

with the specific purpose of  finding periodic continuous or discontinuous 

oscillations driven by a particular combustion model is, in reality, quite 

general. That is, other combustion models could easily be substituted 

for the time-lag model in the equations and boundary conditions. Indeed, 

a model predicting instantaneous response, such as the one used by Sirig- 

nano in his study of shock wave instability would be far simpler to con- 

sider than was the time-lag model. Models considering the droplet vapor- 

ization rate as the controlling mechanism in the combustion process might 

also, in principle, be considered. It should be noted, however, that any 

combustion model that is to be employed in the method of analysis presented 

here must satisfy the condition that its strength can be measured by the 

steady-state Mach number. In other words, the interaction between the com- 

bustion mechanism and the pressure oscillations must be of second order or 

smaller so that acoustic equations describe the flow field to lowest order. 

In particular, it is not clear that it would be possible to consider a 
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postulated nonlinear combustion mechanism such as droplet shattering 

using the present approach.. 

Some suggestions for the extension of the analytical work 

performed in this thesis present themselves. The first extension that 

might be attempted is the integration of the differential-integral equa- 

tion determining the form of the arbitrary first order function for the 

case of distributed combustion, for several different velocity profiles. 

This would give a more precise idea of the effect that distributing the 

combustion zone has on the stability behavior of a combustor. This ex- 

tension would in essence be a problem in numerical integration. A some- 

what more difficult modification of the theory that would be of interest 

is the relaxation of the condition that - d' = O(%) , which was used here 

in the treatment of distributed combustion. Difficulties would develop 

dx 

in such an analysis due to the fact that material, or entropy waves would 

have to be considered. Finally, pursuant to the comments made in the 

preceding paragraph, it should be of interest to perform analyses, similar 

to the one presented here, using different models of  combustion. 

C. Comparison With Experiment 

Because of the tenuous way that the time-lag model is related 

I to the physico-chemical combustion processes that actually occur in a 
I 
I liquid propellant rocket engine, it is not possible to be very optimistic 

about finding any real correspondence between the predictions of the 

present analytical work and the experimentally observed behavior of rocket 

engines exhibiting longitudinal mode instability. Nonetheless, because 

the existence of a characteristic time, which is the main feature of the 

time-lag model, has been verified experimentally in a series of experiments 
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it is reasonable to hope that some 
7 

by Crocco, Grey and Harrje, 

kind of at least qualitative agreement might occur when fully developed 

nonlinear oscillations are considered, 

In the experiments of Crocco, Grey and Harrje just mentioned, 

which were performed in order to check the validity of the linear sta- 

bility theory based on the time-lag model, it was observed that, near 

the stability limits, the regime oscillations observed were often con- 

tinuous in form, while farther from the stability limit they assumed dis- 

continuous shock-type forms. This is in agreement with the results of 

the present work. For, it will be recalled that, according to the analy- 

tical results presented, the nonlinear stability limit passes inside the 

linear stability limit for certain regions of the n , p plane, thus 

forming regions where stable, continuous oscillations are possible. The 

regions where such continuous oscillations are possible are always pre- 

dicted to be very close to the linear stability limit. If the displacement 

from the linear stability limit is increased, a point is reached where the 

nonlinear stability limit for discontinuous solutions is reached and then 

passed, so that at displacements greater than this only discontinuous oscil- 

lations can be predicted. In other words, only close to the stability 

limit are continuous solutions predicted; at greater displacements only 

discontinuous oscillations are possible according to the present theory. 

7 

Other general qualitative agreements between theory and experiment 

can be cited, such as the fact that triggering of first longitudinal mode 

instability is possible in regions of linear stability (Reference 21 ) ,  

and the fact that the form that the triggered oscillations take are discon- 

tinuous in nature (Reference 22 ) . The fact that 2 , the time-lag, 



- 139 - 

is fixed according to the theory, at least for discontinuous oscillations, 

by the interval after the discontinuity at which the slope of the pressure 

waveform becomes negative infinite, and that, for a given time-lag, the 

value of n is determined by the shock amplitude (see Figure 7), suggests 

that, if one makes the somewhat chauvinistic assumption that the combustion 

processes are represented in some reasonable, if gross, way by the time-lag 

model, then, by observing the waveforms and amplitudes of discontinuous 

axial oscillations in an experimental rocket engine, it should be possible 

to assign n a n d 2  values to that given rocket configuration and thus 

to locate the particular combustor on the theoretical n , ik plane. The 

above procedure is, of course, contingent on the observation of discon- 

tinuous waveforms that do, indeed, exhibit infinite negative slopes (or 

a reasonable indication of such behavior) at some point. Unfortunately, 

it is not clear whether, when this behavior is not observed, the absence 

of the expected phenomena is due to the inability of the present pressure 

sensing and recording devices to always record the rapid decrease in pres- 

sure, or to the fact that the predicted behavior simply does not occur. 

In the future, improved pressure recording equipment is to be installed at 

Princeton which should be capable o f  answering the question just posed. 

For the present, the author feels it is of some interest, if only of specu- 

lative interest, to present a correlation of  the type described above for 

a particular pressure waveform that was observed in the Princeton square rocket 

motor which clearly exhibited a pressure decay that approximates a negative 

infinite slope at two points in time. The reason for the two points of 

infinite slope is the fact that the pressure pickup was located downstream 

of the injector SO that both an incident and a reflected shock would be 

observed (see Figure 1 9 ) .  The square motor in question was 68 5 /8  inches 
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long in the configuration from which the pressure trace was taken. Since 

the length of the nozzle fr.om its entrance to its throat is only 1.5 inches 

and the combustion zone is estimated to extend from 6 to 8 inches from the 

injector, it is seen that the assumptions of short nozzle and concentrated 

combustion are not too bad for the rocket under consideration. 

Simply by measuring the distance between the shock and the point 

of (nearly) infinite slope, and then dividing by the total observed length 

of the period, a value for the ratio of the assumed time-lag, T ,  to the 
A 

period was determined. Because of the definition of the nondimensional 

quantity 

be equal to 

configuration considered. This value of 

theoretical n Y p plane, (Figure 7) , Using the experimentally deter- 

mined value of the shock amplitude one then looked along the line of con- 

stant j U  y /L1 = 

shock amplitude occurred. This point where the amplitudes matched then 

determined the value of n , n, for the particular combustor configuration 

the ratio of the physical time-lag to the real period had to 

1 2  , where ,$ is the value of /,( for the particular combustion 

determined a line on the r = F  

until a match between the theoretical and experimental 

A 

under consideration. 

/I 
The values of and pi for this one attempted correlation 

A A 
were n = 1.42 , = .38  . By looking at Figure 2 this point on the 

plane is seen to be in a regionwhere triggering is possible and 
n ,  /" 
where linear stability is predicted. It is somewhat surprising that this 

is, indeed, precisely the observed behavior of the rocket engine tested. 

That is, the configuration is intrinsically stable but can be pulsed into 

stable oscillations that are nearly periodic and are discontinuous in form. 
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Figure 24 shows a comparison between the theoretical and 

experimental waveforms for the values of n and under consideration. 

The agreement is not astonishingly good, but this is to be expected 'due 

to the roughness of the time-lag model. 

slopes become negative infinite (or approximately s o )  on the experimental 

trace are clearly seen to correspond with the theoretical predictions in 

a reasonable way. 

However, the points where the 

Since the results just presented are for one run of one rocket 

configuration,it is, of course, possible that the agreement indicated is 

simply fortuitous. However, the evidence does seem sufficient to warrant 

a comprehensive comparison of theory and experiment in the future. In 

particular, the effect of changing the length of the experimental motor 

on the observed time-lag should be compared with the corresponding change 

predicted by theory. In such an experiment the configuration of the injec- 

tor and the mixture ratio of the propellants would remain fixed so that 

the "physical" n and would be constant. Another experiment that 

might be performed would be to vary the size of the pulses used t o  trigger 

the instability to see if agreement between theory and experiment on the value 

of the limiting triggering amplitude exists. In this experiment the rocket 

configuration would not be varied. It should be emphasized that the antici- 

pated improvements in pressure recording equipment make an experimental 

program of this type feasible. 

Finally, it should be said that though an excellent agreement 

between theory and experiment is not likely, efforts of the kind mentioned 

above seem worthwhile,because, even if a moderately successful correlation 

results, the combustion parameters n , and for a given unstable (in 
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the nonlinear sense) rocket configuration will be able to be determined 

simply by looking at a pressure record made during the unstable operation 

of the given motor. In the end, the results of many such correlations 

could be combined to relate the heuristic combustion parameters n and 

to such relevant rocket engine design parameters as injector design and 

mixture ratio. 
I 
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APPENDIX A: CALCULATION OF T, 

1. Calculation of T, Following the Shock Wave 

It is well known (see for example page 159 of Reference 11 ) 

that to first order in shock amplitude the shock velocity is equal to the 

average of the propagation velocity of sound waves immediately before and 

after the shock. Thus for a right moving shock, say shock AB in Figure 1, 

Urn = [uII + a + u + a . Then, using the facts that (to first TI I I - 
Urn may be rewritten 1 ’  order in shock amplitude) u = u f- u1 , a = 1 f- a 

Similarly, for a left moving shock, say, BC in Figure 1, 

I1 1 Or 
uBc = + [uI - aI + u - a I1 

(a) Concentrated Combustion 

When the concentrated combustion model is used, the first order 

velocity and pressure are given by the following expressions (Equations 

(1-53) and (1 -54) )  

( A - 3 )  

( A - 4 )  
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Substituting these in Equation (A-1 )  yields 

where f(0) is the value of f immediately following the shock and f(2) 

is the value of  f immediately before the shock, and where it has been 

noted that 

the following first order expression for 

< = M . A similar substitution in Equation (A-2) produces 

'BC 

The quantity we are seeking to determine is T , the first 

order correction to the acoustic period, 2 . The period is simply the 

sum of the wave travel time from A to B , TAB added to the wave 

travel time from B to C , TBc . 

1 

Consequently, we may say 

is the first order correction + T B C l  > where TAB1 

to the wave travel time from A to B and TBcl is the first order 
correction to the wave travel time from B to C . Clearly, then 

and 
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- - + 1 , are the first order 
uABl - uAB - , and ' BC1 - 'BC where 

correction to the wave velocity. 

combined to yield the following relation for 

Equation (A-7) and (A-8) can be 

1 

I 0 
(A- 9 )  

The integrals on the right hand side of the equation above are evaluated 

as follows 

d 
J 
0 

(A- 10) 

and 

(A-11) 

Finally, substituting Equations (A-10) and (A-11) into (A-9)  gives the 

expression for the first order correction to the period 

(A-12) 

(b) Distributed Combustion 

In the case of Distributed Combustion, regardless of velocity 



A- 4 

d; 
dx 1 profile as long as - = % the following expressions for u and 

resulted from first order analysis (in shock strength) 
P1 

( A - 1 3 )  

(A- 14) 

8 -  1 s1 
1 1 28 p 1 + 2  p1 is related t o  a by the following expression, a = - 

where s is the (constant) deviation of the entropy from its steady- 

state value. Substituting Equations (A-13)  and (A-14) into (A-1) and 

(A-2) yields 

1 

( A - 1 5 )  

and 

Again separating Tl into Tu, and TBcl one finds 

(A-16)  

( A - 1 7 )  
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T Addition of (A-16) and (A-17) produces the final expression for 

J 
0 

Tl 2.  An Alternative Method of Calculating 

A second method of calculating T, based on extensions, by 
4 

C r o ~ c o , ~ ~  of some developments by Cantrell and Hart will now be 

presented. In this case consideration will be limited, for simplicity, 

t o  the case of concentrated combustion, though the method is equally 

applicable to the case o f  distributed combustion. 

Cantrell and Hart studied the stability of acoustic fields 

under the assumption that the flow in the cavity under consideration was 

isentropic. They manipulated the equations of motion in such a way that 

second order, stability determining equations, only containing first order 

quantities, were obtained. Crocco extended their approach to include non 

isentropic flow fields and the possibility of a discontinuity in the cavity. 

His treatment is general in that he derived equations of the nth order con- 

taining quantities of only the (n - 1) order and did not limit himself to 

second order equations composed of first order quantities as was the case 

in the work of Cantrell and Hart. He a l s o  found that it is possible to 

include source terms and chemically reacting species and still produce equa- 

tions with the character of being one order higher than the quantities com- 

posing them. 

this method in complete generality will be forthcoming. 

It is hoped that in the future a paper giving the details of  

For the purposes of the present work, however, the potentially 
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powerful technique will be employed simply to derive the first order 

correction to the period for the case where no sources are present in 

the chamber and the flow is homentropic through second order. For a 

one dimensional flow field under the restrictions imposed in the first 

chapter, the equations describing the conservation of mass, momentum 

and energy in the field may be written in non dimensional form, using 

the non dimensionalizing system of Chapter I, as 

Because the gas composition is uniform,the following relation obtained 

from the second law of thermodynamics a p p l i e s  

-.- 
,I 

S where s = - -7- 

C 
P 

If ( A - 2 1 )  and ( A - 1 9 )  are combined, the following equation results 

(A-18)  

(A- 1 9 )  

(A-20)  

( A - 2 1 )  
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(A-22)  

Multiplying Equation ( A - 1 8 )  by 

( a -  l)M 
( A - 2 0 )  yields 

5 = 1 - - v -  l M 2  Equation ( A - 2 1 )  by 
S 2 

and subtracting the two equations that result from Equation 

(A-23) 

Two quantities that are combinations of the physical variables are 

introduced 

(A-24)  

(A- 2 5) 

J S  and u - 2 s  to the right hand PUT 3x A x  
Then, adding and subtracting 

side of Equation ( A - 2 3 )  and noting that under the assumptions employed 

Dt 
- -  Ds - 0 the following expression is obtained 

(A-26)  



, 
A- 8 

It is clear upon inspection that if d> or Q is to be of 

second order in Mach number, only first order variations in the quan- 

tities f , u , h , T , and s can be considered. Similarly, 

if @ and Q are of nth order, the physical quantities composing 

them must be of order n - 1 , n - 2 , n - 3 - - - - - etc. The 

quantity q also displays this characteristic, however a little effort 

must be expended in order to see this. First q is rewritten as 

follows 

(A-27) 

The second and third terms above obviously have the desired property of 

being one order of magnitude smaller than the quantities which compose 

them. The relationship between h , p and s must be investigated in 

order to show that this is also true of the first term. Say 

h = l + h l + h  + - - - -  2 

p = 1 + p 1 + p 2 + - - - -  

s = s + s 2 + - - - -  1 

where subscript one means a quantity of O(M) , subscript 2 means a 

quantity of O(M2) etc. Recognizing that, in general, h = h(p , s ) ,  h 

may be represented as follows 
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where the subscript zero means that the derivative is to be evaluated 

in the reference state. 

I 

1 

I 

Now , 

and 

terms o f  order n 
composed of (n - 1) order 

quantities (or lower) 

( A - 2 8 )  

( A - 2 9 )  

Therefore, combining Equations ( A - 2 8 )  and ( A - 2 9 )  

This means that 

(A-30) 

( A - 3 1 )  

+ terms of  order n composed of products of n-1 3- 1 h = - - -  
?f pn + sn order quantities (or lower) n 
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7- 1 
d The term (h - - p - s) t h e r e f o r e  i s  seen  t o  s a t i s f y  t h e  c o n d i t i o n  

t h a t ,  when i t  i s  o f  o r d e r  n , t h e  p h y s i c a l  q u a n t i t i e s  composing i t ,  

p and s , a r e  o rde r  (n - 1) o r  l a r g e r .  

F i n a l l y ,  t hen ,  Equation (A-26)  has t h e  p rope r ty  t h a t  t o  second 

o r d e r  i n  Mach number i t  i s  composed o f  p h y s i c a l  q u a n t i t i e s  which must 

s a t i s f y  the f i r s t  o rde r  conse rva t ion  e q u a t i o n s ,  t o  t h i r d  o rde r  i t  i s  com- 

posed o f  physical  q u a n t i t i e s  t h a t  must s a t i s f y  t h e  second o rde r  conser-  

v a t i o n  equat ions and t o  n t h  o r d e r  i t  i s  composed only of terms t h a t  must 

s a t i s f y  the n - 1 o r d e r  conse rva t ion  e q u a t i o n s .  

Consider now a chamber wi th  a shock i n  i t  as shown i n  F i g u r e  1. 

The c a v i t y  is  d iv ided  i n t o  two r e g i o n s ,  r e g i o n s  I and 11, t o  t h e  l e f t  

and t o  t h e  r i g h t  of  t h e  shock, r e s p e c t i v e l y .  I n  r eg ion  I 

and i n  region I1 

( A - 3 2 )  

( A - 3 3 )  

Equation ( A - 3 2 )  i s  i n t e g r a t e d  wi th  r e s p e c t  t o  x from x = 0 t o  x = 5 
where f i s  the  d i s t a n c e  of t h e  shock from t h e  i n j e c t o r ,  x = 0 .  Th i s  

y i e l d s  

f Y 

0 0 

( A - 3 4 )  
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Similarly, Equation (A-33) is integrated from x = f to x = 1 

I 

J 
3 

Using the chain rule for differentiation one finds 

f f 
Z d x '  - ?!.s us4 

0 
J 
0 

and 

(A-35) 

(A-36) 

(A- 3 7) 

qq represent, I,'f and is the shock velocity and q 'sh where 

respectively, the value of q at x = f 

Adding Equation (A-34) to Equation (A-35) and making use of the relation- 

ships (A-36) and (A-37),the following expression is obtained 

and the value of q at x = J .  I1 I 

0 
J 

0 

(A-38) 

Using the definitions of Q and q , may be written 
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where all quantities are evaluated at the shock in either region I or 

region 11. 

are now written across the normal shock. 

The conservation equations f o r  mass, momentum and energy 

mass: 

(A-40) 

momen tum: 

(A-41) 

energy : 

After some manipulation can be rewritten in the following 

form 
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(A-43)  

The first and third terms on the right hand side of the above expression 

vanish because of Equation ( A - 4 2 ) ,  the second term because of Equation 

(A-40)  and the fourth term because of Equation ( A - 4 1 ) .  Therefore, 

Equation (A-43)  reduces t o  

It is convenient to rewrite this as 

(A-44)  

(A-45)  

where As represents the positive jump in the value of the entropy across 

the shock wave. Using Equation ( A - 4 5 ) ,  Equation (A-38) becomes 

0 

(A-46)  



A- 14 

Since a second order analysis was performed in Chapter 1, 

we wish to find a relationship between first and second order quan- 

tities that will determine Tl . To do this Equation (A-46) must 

be written out correct through third order in the Mach number. Be- 

cause s , the entropy, is of order M 3 , the term Job dx'  is 

seen to be o f  O(M4) or smaller. Consequently, this term can be 

dropped to third order. If the transformation from t to 8 is 

used then Equation (A-46) is written 

0 0 

(A-47) 

In the above equation the definitions q = q2 + q3 + O(M 4 ) , and 

Q = Q + Q + O(M 4 ) have been used, where q2 is o(M~> , q3 is o ( M ~ )  

etc. Also ,  to third order 1 Ush/ has been taken to be equal to the 

steady-state sound velocity, (unity in non dimensional form) since A s  
is of o ( M ~ )  . 

2 3 

If the physical quantities of  interest ( p , u , a , h , S etc.) 

are to be periodic to second order in 8 with period two, then, also, 

q must be periodic in two. Thus, it must be so that 
-2 

Je [ 2 rol q dx) d 8' = 0 . Then, integrating Equation (A-47) 

from = 8 to 8 = e + 2 , yields 

(A-48) 
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where it has been noted that, since u , ( x  = 0) = u, (x = 1) = 0 , 
Q2(x = 1) = Q2(x = 0) = 0 . 
that the increase in entropy 

strength of the shock in the 

ik 
s =  

L I 

It is well known (see for instance Ref. 12 ) 

across a normal shock can be related to the 

f ol 1 owing way 
3 

f&y J 4 . q  
1 2  Y P 

3 

1 d P 1 1  * More- 
3 ( v 2 -  l) or, in nondimensional form, to O(M ) A s = 

over, from the results of  Chapter 1 it is known that t o  the present order 
1 2  g 2  

of approximation the strength of the shock is the same whether moving 

toward the injector or the nozzle and is given by / A  PI J = if (f(0) - f ( 2 ) ) .  

Thus, Equation ( A - 4 8 )  may now be written 

( A - 4 9 )  

It will be recalled that Q was defined as 

1 2  
Q = (f u - M) (h + u - GS) . It is desired now to find Q in 

terms o f  f . In general h = h(pls) . However, since s = 

we may write 

s = o  2 1 

(see Equation ( A - 3 1 ) ) ,  the following expression for hl results 

( A - 5 0 )  
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Using this in the definition of Q it is found that, to third order 

(A-51) 

At x = 0 and x = 1 , u = 0 , consequently the second term on the 

right hand side vanishes at these locations. The quantities 

1 

P 1 and 

can be related to a by using the isentropic condition. Q, at Pl 1 

either the injector or nozzle may then be written Q = 2a (- a M + u2> 
where a and u are to be evaluated at either x = 1 or x = 0 . 

due to the combustion occurring At the injector the condition on 

there, is u (X = 0) = - ‘1( - M [al - Ifn al( e - p )  . This combustion 

zone boundary condition was presented in the first chapter. Substituting 

3 1 8 - 1  1 

1 2 

u2 

I 2 
2 

this relationship for u into the expression for Q yields 2 3 

(A-52) 

Similarly, the constant Mach number requirement at x = 1 , 

means that 

u2 = Mal , 

(A-53) 

Expressing a and u1 in terms of f (see Equations (1-53) and (1-54)) 

Equations (A-52) and (A-53)  become respectively 

1 
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( A - 5 5 )  

(A-56) 

Consequently, Q, at x = 0 can be written 

( A - 5 7 )  

Substituting Equation ( A - 5 7 )  and ( A - 5 5 )  into Equation ( A - 4 9 )  and per- 

forming the integration on the left hand side yields 
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In order for this expression to hold for all periodic solutions, it must 

hold for all values of x and y ,(f(2) and f(0)) . Thus,one must 

solve Equation (A-59) for O( . This is easily done and the following 

value for d is obtained 

(A-60) 

Using the definition of O( following Equation (A-59),then gives the 

final expression for 

(A-61)  

This is precisely the same result found using the first method. 

It is clear that somewhat more manipulation is required in 

To the order to find rl using the second method presented above. 
order of approximation necessary for the present work, that is,in order 

to find 7, , this extra effort can hardly be justified. However, the 

second method can easily and consistently be extended in order to deter- 

mine the higher order corrections to the period. This is not true for 

the first method since it was dependent on the fact that, to lowest order 

in shock strength, the -velocity of the shock is the average velocity of 

sound waves immediately before and after the shock. 

order analyses this would nu longer be true. Thus, because the second 

technique is more general, and can be applied to higher order analyses, 

it is felt that the presentation of the second method is appropriate. 

Of course, for higher 
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